ISSN

print 2570-7337
online 2570-7345

Turmalinit z Velkých Žernosek (oparenské krystalinikum, severní Čechy)

Tourmalinite from Velké Žernoseky (Oparno crystalline complex, northern Bohemia)


Klíčová slova

Abstrakt

Tourmalinite occurrences at Kalvárie hill near Velké Žernoseky (northern Bohemia, Czech Republic) are represented by massive tourmaline-rich layers (with minor quartz <10 vol.%) in biotite-muscovite metapelites (phyllite to schist). Two tourmalinite assemblages were identified: a) almost monomineral tourmalinites to quartz–tourmaline rocks with accessory biotite, chlorite, fluorapatite, muscovite, calcite, and K-feldspar; b) tourmaline-epidote-quartz tourmalinites with minor garnet, muscovite and chlorite, and rare titanite, epidote and zircon. Garnet from the contact of the latter assemblage with the host rock (schist) exhibits an inverse zoning of Fe and Mn (Mn-rich core, Fe-rich rims). Four textural and compositional types of tourmaline containing variable contents of Fe3+, Fe2+, Ti, Ca, Na, and F were found. Other tourmalinite occurrences in the Oparno Crystalline Complex (Oparno-Černodolský mlýn, Chotiměř) are characterized by increased amount of quartz, and typically form tourmaline-quartz veins in muscovite-biotite gneisses. Compared to the occurrence at Kalvárie hill, the tourmaline from Oparno has higher Mg, Al, and Ca contents and lower amounts of Na and OH. All rocks most likely formed by metamorphic overprint of boron-bearing protolite (biotite-muscovite metapelite with basic admixture), however, a source of boron remain ambiguous.

Soubory

Abstrakt (PDF) - 196.58KB
Fulltext (PDF) - 2.52MB

Reference

Bird D. K., Helgeson H. C. (1981) Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems. II. Equilibrium constraints in metamorphic/geothermal processes. Amer. J. Sci. 281, 576-614.

Bukovanská M., Cháb J., Jilemnická L., Rybka R. (1981) Minerální asociace „skarnu“ z krystalinika od Žernosek v Českém středohoří. Acta Univ. Carol., Geologica 4, 339-340.

Cajz V., Burda J., Čech S., Kadlec J., Mlčoch B., Uhlířová I., Valečka J. (1996) České středohoří: geologická a přírodovědná mapa 1 : 100 000, Česká geologická služba, Praha, 146 s.

Čopjaková R., Buriánek D., Škoda R., Houzar S. (2009) Tourmalinites in the metamorphic complex of Svratka Unit (Bohemian Massif): a study of compositional growth of tourmaline and genesis relations. J. Geosci. 54, 221-243.

Čopjaková R., Škoda R., Vašinová Galiová M. (2012) „Oxy-dravit“ z turmalinitů krkonošsko-jizerského krystalinika. Bull. mineral-petrolog. Odd. Nár. Muz. (Praha) 20, 1, 37-46.

Grapes R. H., Hoskin, P. W. O. (2004) Epidote Group Minerals in Low-Medium Pressure Metamorphic Terranes. – Reviews in Mineralogy and Geochemistry 56, 301-345.

van Hinsberg V. J., Henry D. J., Dutrow B. L. (2011) Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of its Geologic Past. Elements 7, 5, 327-332.

Hellingwerf R. H., Gatedal K., Gallagher V., Baker J. H. (1994) Tourmaline in the central Swedish ore district. Mineral. Deposita 29, 189-205.

Henry D. J., Dutrow B. (1996) Metamorphic tourmaline and its petrologic applications. In. Grew E. S., Anowitz L. M. (Eds). Boron. Mineralogy, petrology and geochemistry. Rev. Miner. 33, Miner. Soc. Amer. 503-557.

Henry D. J., Dutrow B. (2011) The incorporation of fluorine in tourmaline: internal crystalographic controls or external environmental influences?. Can. Mineral. 49, 41-55.

Henry D. J., Guidotti Ch. V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Amer. Mineral. 70, 1-15.

Hewitt D. A. (1975): Stability of the assemblage phlogopite - calcite - quartz. Amer. Mineral. 60, 391-397.

Houzar S., Hrazdil V., Toman J. (2013) Dravite-schorl evolution in tourmalinite from Oparno Crystalline Complex, Saxothuringicum. Mitt. Österr. Miner. Ges., (Abstracts „MinPet 2013“, Graz) 159, 68.

Houzar S., Novák M., Selway J. B. (1998) Compositional variation in tourmaline from tourmalinite and quartz segregations at Pernštejn near Nedvědice (Svratka Unit, western Moravia, Czech Republic). J. Czech geol. Soc. 43, 1-2, 53-58.

Cháb J., Breiter K., Fatka O., Hladil J., Kalvoda J., Šimůnek Z., Štorch P., Vašíček Z., Zajíc J., Zapletal J. (2008) Stručná geologie základu Českého masivu a jeho karbonského a permského pokryvu. Česká geologická služba Praha, 283 s.

Kebrt M., Lhotský P., Pertold Z., Adam J. (1984) Turmalinity a turmalinické kvarcity v krystaliniku Českého masivu. In: Sbor. „Korelace proterozoic. paleozoic. stratiformních ložisek“, ÚÚG a GÚ UK Praha, 85-101.

Merlet C. (1994) An accurate Computer Correction Program for Quantitative Electron Probe Microanalysis. Microchimica Acta 114/115, 363-376.

Mlčoch B. (2002) Problematika regionální příslušnosti krystalinika České brány k saxothuringiku. Zpr. geol. Výzk. v R. 2002, 31-32.

Novák M., Šrein V. (2000) Tourmaline as a petrogenetic indicator of magmatic, metamorphic and hydrothermal processes in the Bohemian Massif. Acta Montana IRSM AS CR, Series AB 8, 23-30.

Poubová M. (1963) Krystalinikum Opárenského údolí a České brány. Sbor. geol. Věd, řada Geologie 2, 79-99.

Radoň M. (1999) Dravit a křemen z Oparenského údolí u Lovosic. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 7, 238-239.

Radoň M. (2010) Historické a významné mineralogické lokality Českého středohoří a jejich současný stav. Sbor. abstraktů a exkurzní průvodce 2. vulkanolog. semináře, Teplice 2010, 83-106.

Radoň M., Žáček V., Rapprich V., Kycl P. (2010) Dočasné mineralogické lokality spojené s výstavbou dálnice D8 v úseku Lovosice–Trmice. Zpr. geol. Výzk. v R. 2010, D – Mineralogie, petrologie a geochemie 177-183.

Slack J. F. (1996) Tourmaline associations with hydrothermal ore deposits. In: Grew E. S., Anowitz L. M. (Eds). Boron. Mineralogy, petrology and geochemistry. Rev. Miner. 33, Miner. Soc. Amer. 559-943.

Slack J. F., Herriman N., Barnes G. R. Plimer I. R. (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12, 713-716.

Žák T., Jirásková Y. (2006) CONFIT: Mössbauer spectra fitting program. Surf. Interface Anal. 38, 710-714.