Mineralogie antimonitového ložiska Chříč u Rakovníka (Česká republika)
Mineralogy of the stibnite deposit at Chříč near Rakovník (Czech Republic)
Klíčová slova
Abstrakt
A small abandoned Sb-deposit at Chříč near Rakovník (Central Bohemia, Czech Republic) is represented by hydrothermal veins hosted by metagreywackes and metasiltstones of the Barrandian Neoproterozoic, which were contactly metamorphosed by dyke intrusion of a Paleozoic lamprophyre (spessartite). A rich sulphidic association containing together with stibnite, pyrite and arsenopyrite also nineteen subordinate or accessory ore minerals (sphalerite, berthierite, galena, tetrahedrite, freibergite, chalcopyrite, ullmannite, jamesonite, boulangerite, cobaltite, costibite, gersdorffite, bournonite, greenockite, native silver and native antimony) was found during our study of dump and museum material. Very interesting is especially the presence of Ag- and Se-rich minerals including Ag-rich tetrahedrite, freibergite, naumannite, clausthalite and Se-rich stephanite. The gangue is formed mainly by quartz, but in a lesser amount there occur also either older and younger carbonates (dolomite-ankerite), in places together with illite-muscovite and rare barite. Rare microscopic grains of fluorapatite, rutile, zircon and monazite-(Ce) were also found. Origin of kermesite is probably related to the low-temperature hydrothermal processes; chapmanite was probably formed by weathering of primary stibnite. The youngest phases are clearly supergene minerals including jarosite, cerusite, anglesite, valentinite and very abundant limonite.
Soubory
Reference
Bernard JH, Čech F, Dávidová Š, Dudek A, Fediuk F, Hovorka D, Kettner R, Koděra M, Kopecký L, Němec D, Paděra K, Petránek J, Sekanina J, Staněk J, Šímová M (1981) Mineralogie Československa. Academia Praha
Feistmantel C (1858) Neues Vorkommen von Antimonglanz in Böhmen. Lotos 8: 235
Grögler J (1891) Exposé vom Jahre 1891 über den Antimonbergbau bei dem Dorfe Křič (Böhmen). MS, Příbram
Hajná J, Žák J, Kachlík V, Dörr W, Gerdes A (2013) Neoproterozoic to early Cambrian Franciscan-type mélanges in the Teplá-Barrandian unit, Bohemian Massif: evidence of modern-style accretionary processes along the Cadomian active margin of Gondwana? Precambr Res 224: 653-670
Hajná J, Žák J, Dörr W (2017) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondw Res 42: 63-83
Hajná J, Žák J, Dörr W, Kachlík V, Sláma J (2018) New constraints from detrital zircon ages on prolonged, multiphase transition from the Cadomian accretionary orogen to a passive margin of Gondwana. Precambr Res 317: 159-178
Hajná J, Žák J, Ackerman L, Svojtka M, Pašava J (2019) A giant late Precambrian chert-bearing olistostrome discovered in the Bohemian Massif: A record of Ocean Plate Stratigraphy (OPS) disrupted by mass-wasting along an outer trench slope. Gondw Res, in press
Hybler J, Durovič S (2013) Kermesite, Sb2S2O: crystal structure revision and order - disorder interpretation. Acta Crystallogr B 69
Irmler A (1915) Oblasti antimonových rudních výskytů v Čechách. Horn-hutn listy 10: 169-171
Katzer F (1894) Hoeferit, ein neues Mineral der Nontronitgruppe von Křitz bei Rakonitz. Tschermaks mineral petrogr Mitt 14(1): 519
Katzer F (1904) Notizen zur Geologie von Böhmen. VI. Zur geologischen Kenntnis des Antimonitvorkommens von Křitz bei Rakonitz. Verhandl der k k geol Reichsanst 12: 263-268
Kratochvíl J (1958) Topografická mineralogie Čech II (H-Ch). NČSAV, Praha
Laugier J, Bochu B (2011) LMGP-Suite of Programs for the Interpretation of X-ray Experiments. http://www.ccp14.ac.uk/tutorial/lmgp, přístup duben 2011
Malec J, Novák F (1982) Mineralogicko-geochemické studium těžkých minerálů pro úkol „Šlichová prospekce jz. části Českého masivu“. MS, Ústav nerostných surovin, Kutná Hora, archiv ČGS-Geofond GF P 111552
Möelo Y, Makovicky E, Mozgova NN, Jambor JL, Cook N, Pring A, Paar W, Nickel E, Graeser S, Karup-Møller S, Balić-Žunić T, Mumme WG, Vurro F, Topa D, Bindi L, Bente K, Shimizu M (2008) Sulfosalt systematics: A review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur J Mineral 20: 7-46
Pouchou J, Pichoir F (1985) „PAP“ (jrz) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press San Francisco
Reuss AE (1858) Mineralogische Notizen aus Böhmen. Lotos 6: 258
Rieder M, Cavazzini G, D´yakonov YS, Kamenetskii VAF, Gottardi G, Guggenheim S, Koval´ PV, Mueller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Can Mineral 36: 905-912
Sobotka J (1965a) Doly na antimon v Čechách. Národní muzeum v Praze a Společnost Národního muzea 23 s
Sobotka J (1965b) Die Identität des Hoeferits mit dem Chapmanit und der Chapmanit aus Boněnov. Acta Univ Carol Geol 2: 129-140
Svoboda J (1942) Výskyt antimonitu u Chříče na Rakovnicku. MS, Geofond Praha 1-13 GF P002536
Trdlička Z, Hoffman V (1975) Untersuchungen der chemischen Zusammensetzung der Gangkarbonate von Kutná Hora (ČSSR). Freiberg Forschungshefte 6: 29-81
Zimmerhakl P (1982) Distribuce zlata a zhodnocení jeho akumulací v křivoklátsko-rokycanském pásmu a přilehlém proterozoiku. MS, diplomová práce, PřF UK Praha