Cowlesit a doprovodná mineralizace z vrchu Hackenberg u České Kamenice (Česká republika)
Cowlesite and accompanying mineralization from the Hackenberg hill near Česká Kamenice (Czech Republic)
Klíčová slova
Abstrakt
Nine species of zeolites were found at the Hackenberg hill, very interesting mineralogical site located 2 km southwest from Česká Kamenice (Czech republic). These nine zeolites were found in the cavities which are located at the contact of basalt volcanic tuffs and breccia. Several of these zeolites are relatively rare, especially cowlesite.
Cowlesite forms white hemispherical aggregates with size up to 10 mm, due its size belongs to world´s largest cowlesites. The unit cell parameters of cowlesite, refined from powder X-ray data, are a 11.267(7), b 15.255(7), c 11.992(8) Å and V 2061(5) Å3. Chemical analyses of cowlesite correspond to the empirical formula Ca0.90Na0.12Mg0.01K0.01(Al1.89Si3.10)O10·4 H2O. Other zeolites which were at Hackenberg hill identified include lévyne-Ca, erionite-Ca, gismondine, thomsonite-Ca, phillipsite-K, chabazite-Ca, natrolite a analcime.
Lévyne-Ca forms hexagonal tabular colorless crystals with an average size of 2 - 4 mm. The unit cell parameters of lévyne-Ca, refined from powder X-ray data, are a 13.330(3), c 23.0122(3) Å and V 3541.3(9) Å3. Chemical analyses of lévyne-Ca correspond to the empirical formula Ca2.76K0.68Na0.17Sr0.02(Si14.46Al6.36)O36·18H2O.
Erionite-Ca forms whitish epitaxial aggregates on the surface (0001) of lévyne-Ca. These aggregates are composed of fine needles oriented perpendicular to the surface of lévyne-Ca. Chemical analyses of lévyne-Ca correspond to the empirical formula Ca2.76K0.68Na0.17Sr0.02(Si14.46Al6.36)O36·18H2O.
Gismondine, the rarest mineral found at this site, forms typical colorless to whitish dipyramidal crystals with size up to 1 mm. The unit cell parameters of gismondine, refined from powder X-ray data, are a 10.021(2), b 10.630(3), c 9.828(3) Å, β 92.51° and V 1045.8(5) Å3. Chemical analyses of gismondine correspond to the empirical formula Ca1.98Na0.06(Si4.10Al3.85)O16·8H2O.
Thomsonite-Ca forms colorless to yellowish tabular crystals and hemispherical aggregates. The unit cell parameters of thomsonite-Ca, refined from powder X-ray data, are a 13.104(2), b 13.056(1), c 13.247(2) Å and V 2266.4(6) Å3. Chemical analyses of thomsonite-Ca correspond to the empirical formula Ca1.78Sr0.05Na1.12(Al4.69Si5.29)O20 · 6H2O.
Phillipsite-K forms typical columnar colorless to whitish crystals with a size 1-2 mm. The unit cell parameters of phillipsite-K, refined from powder X-ray data, are a 9.917(4), b 14.314(8), c 8.737(4) Å, β 124.920° and V 1016.9(9). Chemical analyses of phillipsite-K correspond to the empirical formula K1.95Ca1.91Na0.12(Si10.09Al5.91)O32·12H2O.
Chabazite-Ca forms colorless glassy rhombohedron. The unit cell parameters of chabazite-Ca, refined from powder X-ray data, are a 13.837(6), c 15.0073(4) and V 2488(1). Chemical analyses of chabazite-Ca correspond to the empirical formula Ca1.54Na0.20K0.14Sr0.04Al3.46Si8.53O24·13H2O.
Natrolite forms in up to 5 cm large cavities whitish needles and hemispheres of up to 1 cm. The unit cell parameters of natrolite, refined from powder X-ray data, are a 18.376(5), b 18.552(5), c 6.585(2) Å and V 2244(1). Chemical analyses of natrolite correspond to the empirical formula Na1.79Ca0.10(Si3.01Al1.99)O10·2H2O.
Analcime occurs in the cavities together with larger hemispheres of cowlesite and lévyne-Ca and it forms whitish lenticular crystals. The unit cell parameters of analcime, refined from powder X-ray data, are a 13.703(5) and V 2573(1). Chemical analyses of analcime correspond to the empirical formula Na0.90K0.01Al0.93lSi2.07O6·H2O.
Soubory
Reference
Alberti A., Cruciani G., Dauru I. (1995) Order disorder in natrolite-group minerals. Eur. J. Miner. 7, 501-508.
Burnham Ch. W. (1962) Lattice constant refinement. Carnegie Inst. Washington Year Book 61, 132-135.
Coombs D. S., Alberti A., Armbruster T., Artioli G., Colella C., Galli E., Grice J. D., Liebau F., Mandarino J. A., Minato H., Nickel E. H., Passaglia E., Peacor D. R., Quartieri S., Rinaldi R., Ross M., Sheppard R. A., Tillmanns E., Vezzalini G. (1997) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, commission on new minerals and mineral names. Can. Mineral. 35, 1571-1606.
Gatta G. D., Nestola F., Boffa Ballaran T. (2006) Elastic behavior, phase transition, and pressure induced structural evolution of analcime. Amer. Mineral. 91, 568-578.
Gatta G. D., Cappelletti P., Rotiroti N., Slebodnick C., Rinaldi R. (2009) New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. Am. Mineral. 94, 190-199.
Gottardi G. (1978) Mineralogy and crystal chemistry of zeolites. In Sand L. B., Mumpton F. A. Eds. Natural Zeolites, Pergamon Press, 31-44. Oxford.
Gottardi G., Galli E. (1985) Natural Zeolites. Springer-Verlag, Berlin.
Hibsch J. E. (1934) Die Minerale des Böhmischen Mittelgebirges. Jena.
Hrůzek L., Janeček O. (2013) Nová lokalita zeolitů Rollberg u Kunratic u České Kamenice. Minerál 21, 6, 523-527.
Hrůzek L., Janeček O., Fuchs P. (2013) Zapomenutá zeolitová lokalita Eschlers Bergel u Kunratic u České Kamenice. Minerál 21, 6, 510-517.
Janeček O., Hrůzek L. (2008) Levyn a další zeolity z Hackenbergu u České Kamenice. Minerál 16, 1, 15-19.
Janeček O., Hrůzek L. (2009a) Nová lokalita offretitu a cowlesitu Lysá hora u Bělé pod Bezdězem. Minerál 17, 3, 195-199.
Janeček O., Hrůzek L. (2009b) Zapomenutá lokalita Malá Hůrka u České Kamenice. Minerál 17, 3, 200-204.
Kratochvíl J. (1960) Topografická mineralogie Čech. III (I-K). Nakladatelství ČSAV, Praha.
Merlino S., Galli E., Alberti A. (1975) The crystal structure of levyne. Tschermaks mineral. petrogr. Mitt., 22, 117-129.
Ondruš P. (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enchede.
Pauliš P., Radoň M., Janeček O., Dvořák Z., Svejkovský J., Jebavá I., Řehoř M. (2012) Erionit-Ca z Michlova vrchu u Provodína, jv. od České Lípy (Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 2, 213-217.
Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.
Rinaldi R., Vezzalini G. (1985) Gismondine: the detailed x-ray structure refinement of two natural samples. Studies in Surface Science and Catalysis 24, 481-492.
Rychlý R., Tschernich R. W. (1998) Cowlesit, faujasit, gobbinsit - nové zeolity pro ČR. Minerál 6, 2, 94-95.
Rychlý R., Tschernich R. W. (1999) Cowlesit - nový zeolit pro ČR. In: Zeolity a jejich aplikace. Spec. publ. č. 1 České zeolitové skupiny - ČSVVJ, 31. Hradec Králové.
Rychlý R., Langrová A., Had J. (1996) Chemistry of cowlesite from Žežice, Bohemia. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun., Geology 26, 43-44.
Rychlý R., Langrová A., Had J. (1999) Chemistry of cowlesite from Žežice, Bohemia. In: Zeolity a jejich aplikace. Spec. publ. č. 1 České zeolitové skupiny - ČSVVJ, 31-32. Hradec Králové.
Slavík F. (1926) Levyn z Horní Kamenice. Čas. Nár. Muz., Vědy Přír. 98, 106-107.
Stahl K., Kvick A., Smith J. V. (1990) Thomsonite, a neutron diffraction study at 13 K. Acta Crystal., S. C 46, 1370-1373.
Tschernich R. W. (1992) Zeolites of the world. Geoscience Press, Phoenix.
Wise W. S., Tschernich R. W., Ancharov A. I., Sheromov M. A. (1975) Cowlesite, a new Ca-zeolite. Amer. Mineral. 60, 951-956.
Yvon K., Jeitschko W., Parthé E. (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J. Appl. Cryst. 10, 73-74.