ISSN

print 2570-7337
online 2570-7345

Slavkovit z Preisselbergu, rudní revír Krupka (Česká republika) a jeho minerální asociace

Slavkovite from Preisselberg, the Krupka ore district (Czech Republic) and its mineral association


Klíčová slova

Abstrakt

A unique supergene mineral association was found at abandoned Gallery No. 3 Preisselberg, the Krupka ore district, Krušné hory Mountains, Czech Republic. Slavkovite forms there light pale blue to blue-green rosettes up to 1 mm across composed by lath-like crystals; it is translucent (in aggregates) to transparent (in crystals), very brittle, and has a vitreous luster and perfect cleavage. It is triclinic, space group P-1, the unit-cell parameters refined from X-ray powder diffraction data are: a 6.414(2), b 14.370(3), c 16.527(4) Å, α 102.81(2), β 101.12(2), γ 97.94o and V 1431.0(8) Å3; its chemical analyses correspond to the empirical formula (Cu12.92Zn0.05Al0.02)Σ12.99[(AsO4)6.01(PO4)0.01]Σ6.02(AsO3OH)3.98·23H2O on the basis As+P=10 apfu. Olivenite was found as relatively abundant dark olive green hemispherical to spherical aggregates up to several mm in size. It is orthorhombic, space group Pnnm, the unit-cell parameters refined from X-ray powder diffraction data are: a 8.6300(8), b 8.2405(8), c 5.8384(2) Å and V 422.31(5) Å3; its chemical analyses correspond to the empirical formula (Cu2.01Zn0.01Fe0.01)Σ2.03[(AsO4)0.99(PO4)0.01]Σ1.00(OH)1.06 on the basis As+P = 1 apfu. Abundant strashimirite occurs there as greenish to white coatings on the area to several cm2, its light green crystalline aggregates up to 0.5 mm in size consisting of acicular crystals are more rare. Strashimirite is probably monoclinic, space group P2, the unit-cell parameters refined from X-ray powder diffraction data are: a 9.569(6), b 18.59(1), c 9.032(6) Å, β 97.21(6)o and V 1594(1) Å3; its chemical analyses correspond to the empirical formula (Cu7.89Al0.07Zn0.05Ca0.03)Σ8.04[(AsO4)3.74(SO4)0.24(PO4)0.03]Σ4.00(OH)4.41·5H2O on the basis As+P+S = 4 apfu. Brochantite forms there abundant dark green fine crystalline coatings on the area up to several cm2 in size and rarely also dark green tiny (up to 0.5 mm) prismatic crystals. It is monoclinic, space group P21/a, the unit-cell parameters refined from X-ray powder diffraction data are: a 13.133(1), b 9.855(1), c 6.016(1) Å, β 103.25(1)o and V 757.8(1) Å3; its chemical analyses correspond to the empirical formula (Cu3.91Al0.02)Σ3.93[(SO4)0.97(AsO4)0.03]Σ1.00(OH)5.85 on the basis S+As+P = 1 apfu. Devilline was found as relatively abundant whitish fine crystalline coatings on the area up 1 x 1 cm in size; light bluish green aggregates up to 0.5 cm across or rarely also transparent tabular crystals up to 0.2 mm across. Devilline is monoclinic, space group P21/c, the unit-cell parameters refined from X-ray powder diffraction data are: a 20.86(1), b 6.195(3), c 21.96(1) Å, β 102.92(1)o and V 2767(3) Å3; its chemical analyses correspond to the empirical formula Ca1.05(Cu4.11Al0.02)Σ4.13(SO4)2.00(OH)6.39·3H2O on the basis S = 2 apfu. An unnamed Cu-Ca arsenate occurs there as lavendulan-like blue crystalline coatings covering area up to 5 x 5 mm in size or hemispherical aggregates up to 0.5 mm across; its aggregates are composed from very thin (only 1 - 4 μm) tabular crystals up to 80 μm in size. Its X-ray powder data (strongest line 12.51 Å) does not correspond to any known mineral phases. Chemical composition of this mineral phase is possible to be expressed on the basis As+P+S = 4 apfu by empirical formulae Na0.03Ca1.03(Cu4.99Al0.03Zn0.01)Σ5.03 [(AsO4)3.73(SO4)0.25(PO4)0.02]Σ4.00Cl0.43·nH2O (thin tabular aggregates) or (Na0.03K0.02)Σ0.16Ca1.17(Cu4.69Al0.03Zn0.01)Σ4.73[(AsO4)3.73(SO4)0.25(PO4)0.02]Σ4.00 Cl0.59·nH2O (tabular aggregates). Further an unnamed Cu arsenate forms there light pale bluish green crystalline aggregates up 1 - 2 mm in size composed by tabular crystals up to 250 μm across in association with slavkovite. It is transparent to translucent, has a vitreous luster and perfect cleavage. Its X-ray powder data (strongest line 9.807 Å) does not correspond to any known mineral phases. This mineral phase is considerably unstable under electron beam of EPMA, the cation/anion ratio determined drom WDS is in the range of 1.16 - 1.36. The origin of described mineral association is connected with (sub)recent weathering of primary tennantite in conditions of abandoned mine adit. Origin of Cu-arsenates is possible to express by following sequence: strashimirite → Cu-Ca arsenate → olivenite → slavkovite → Cu-arsenate.

Soubory

Abstrakt (PDF) - 212.25KB
Fulltext (PDF) - 9.11MB

Reference

Burnham Ch. W. (1962) Lattice constant refinement. Carnegie Inst. Washington Year Book 61, 132-135.

Burns P. C., Hawthorne F. C. (1995) Rietveld refinement of the crystal structure of olivenite: a twinned monoclinic structure. Can. Mineral. 33, 885-888.

Eisenreich M., Breiter K. (1993) Krupka, deposit of Sn-W-Mo ores in the eastern Krušné hory Mts. Věst. Čes. geol. Úst. 68, 15-22.

Foit F. F., Ulbricht M. E. (2001) Compositional variation in mercurian tetrahedrite-tennantite from the epithermal deposits of the Steeens and Pueblo Mountains, Harney County, Oregon. Can. Mineral. 39, 819-830.

Frost R. L., Sejkora J., Čejka J., Keeffe E.C. (2009) Vibrational spectroscopic study of the arsenate mineral strashimirite Cu8(AsO4)4(OH)4.5H2O - Relationship to other basic copper arsenates. Vibrat. Spectrosc. 50, 289-297.

Giester G., Kolitsch U., Leverett P., Turner P., Williams P. A. (2007) The crystal structures of lavendulan, sampleite, and a new polymorph of sampleite. Eur. J. Mineral. 19, 75-93.

Gołębiowska B. (1999) Strashimirite and cornwallite (copper arsenates) from Rędziny (Lower Silesia, Poland). Mineral. Polon. 30, 3-11.

Johnson N. E., Craig J. R., Rimstidt J. D. (1986) Compositional trends in tetrahedrite. Can. Mineral., 24, 385-397.

Krause W., Täuber H. (1992) Zum Kenntnisstand der Minerale Serpierit, Orthoserpierit und Devillin. Aufschluss 43, 1-25.

Lynch J. V. G. (1989) Large-scale hydrothermal zoning reflected in the tetrahedrite-freibergite solid solution, Keno hill Ag-Pb-Zn district, Yukon. Can. Mineral. 27, 383-400.

Malý K. D., Sejkora J. (2004) Supergenní Cu a Bi mineralizace na lokalitě Tři Sekery u Mariánských Lázní. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 12, 136-139.

Merlino S., Perchiazzi N., Franco D. (2003) Brochantite, Cu4SO4(OH)6: OD character, polytypism and crystal structures. Eur. J. Mineral. 15, 267-275.

Mills S. J., Kampf A. R., Pasero M., Merlino S. (2010) Discreditation of "orthobrochantite" (IMA 78-64) as the MDO1 polytype of brochantite. Eur. J. Mineral. 22, 453-457.

Minčeva-Stefanova J. (1968) Strashimirite - new hydrated copper arsenate. Zap. Vses. Mineral. Obšč. 97, 470-477.

Minčeva-Stefanova J. (1998) Strashimirite from the Venetsa deposit, Western Balkan Mountain as an informator about its morphological diversity and two types of parageneses. Geochem. Mineral. and Petrol. 33, 3-14.

Mrázek Z., Řídkošil T., Ederová J. (1983) New data for devillite. N. Jb. Miner. Mh. 79-88.

Nefedov E. I. (1953) Report on new minerals discovered by him. Zap. Všes. Mineral. Obšč. 82, 311-317.

Ondruš P. (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enchede.

Ondruš P., Veselovský F., Hloušek J., Skála R., Vavřín I., Frýda J., Čejka J., Gabašová A. (1997) Secondary minerals of the Jáchymov (Joachimsthal) ore district. J. Czech Geol. Soc. 42, 3-6.

Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.

Řídkošil T. (1978) Novoveská Huta - nová lokalita vzácných druhotných nerostů mědi. Čas. Miner. Geol. 23, 214-215.

Sabelli C., Zanazzi P. F. (1972) The crystal structure of devillite. Acta Cryst. B28, 1182-1189.

Sack R. O., Loucks R. R. (1985) Thermodynamic properties of tetrahedrite-tenantites: constraints on the interdependence of the Ag = Cu, Fe = Zn, Cu = Fe, and As = Sb exchange reactions. Am. Mineral. 70, 1270-1289.

Sejkora J., Breiter K. (1999) Historický rudní revír Krupka, Krušné hory. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 7, 29-45.

Sejkora J., Ďuďa R., Novotná M. (2001) Minerály oxidační zóny žíly Krížová, Gelnica, Slovenské Rudohorie. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 9, 121-139.

Sejkora J., Pauliš P., Malíková R., Zeman M., Krtek V. (2013) Supergenní minerály As ze štoly č. 2 Preisselberg, rudní revír Krupka (Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 21, 2, 201-209.

Sejkora J., Plášil J., Ondruš P., Veselovský F., Císařová I., Hloušek J. (2010) Slavkovite, Cu13(AsO4)6(AsO3OH)4.23H2O. Can. Mineral. 48, 1157-1171.

Sejkora J., Radoň M. (1997) Brochantit z fluoritového ložiska Vrchoslav (Krušné hory). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 4-5, 190-192.

Sejkora J., Škoda R., Ondruš P. (2006) New naturally occuring mineral phases from the Krásno - Horní Slavkov area. J. Czech Geol. Soc. 51, 159-187.

Sejkora J., Škovíra J. (2007) Výskyt cyanotrichitu na haldách ložiska Krupka v Krušných horách. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 14-15, 126-127.

Sejkora J., Škovíra J., Čejka J., Plášil J. (2009) Cu-rich members of the beudantite-segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic. J. Geosci. 54, 355-371.

Sejkora J., Škovíra J., Losos Z., Litochleb J. (2011): Sn-Ti mineralizace z revíru Krupka v Krušných horách (Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 19, 2, 148-163.

Sejkora J., Škovíra J., Škoda R (2007) Minerál ze skupiny mixitu z ložiska Krupka v Krušných horách. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 14-15, 128-130.

Sejkora J., Škovíra J., Škoda R. (2008) Zinkolivenit z rudního revíru Krupka, Krušné hory (Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 16, 1, 24-29.

Sejkora J., Šrein V. (2012) Supergenní Cu mineralizace z Mědníku na Měděnci, Krušné hory (Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 2, 255-269.

Škovíra J., Sejkora J., Dvořák Z., Řehoř M. (2004) Nové poznatky o supergenních minerálech revíru Krupka, Krušné hory. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 12, 228-232.

Števko M., Sejkora J., Bačík P. (2011) Mineralogy and origin of supergene mineralization at the Farbiště ore occurrence near Poniky, central Slovakia. J. Geosci. 56, 3, 273-298.

Yvon K., Jeitschko W., Parthé E. (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J. Appl. Cryst. 10, 73-74.