ISSN

print 2570-7337
online 2570-7345

Influence of diagenetic processes on assemblage of heavy minerals in sandstones from the locality Slivotín (Ždánice Unit, Flysch Belt of the Outer Western Carpathians, Czech Republic)


DOI: https://doi.org/10.46861/bmp.29.027

Keywords

Abstract

An electron microprobe study of polished sections prepared from a sample of fine-grained sandstone from the locality Slivotín (Ždánice-Hustopeče Formation, Ždánice Unit, Flysch Belt of the Outer Western Carpathians, Czech Republic) allowed to yield in addition to data on chemical composition also the detailed information on in situ textural relationships of individual minerals. During our study, emphasis was given to accessory phases belonging to the translucent heavy mineral fraction. The detrital garnet (Alm36-82Grs2-45Prp2-22Sps0-15) was extensively dissolved and replaced by calcite cement from its margins and along the cracks. Detrital fluorapatite was dissolved in a similar way, however, dissolution episode was followed by growth of authigenic rims composed of carbonate-fluorapatite. Other observed heavy minerals (zircon, chrome spinel, TiO2 phase, monazite, tourmaline) probably remained unaltered by diagenetic processes. The chemical composition of chrome spinels varies mostly between magnesiochromite and chromite, whereas spinel is very rare. The chemical composition of garnets and chrome spinels is comparable with published data from Czech, Polish and Slovak parts of the Flysch Belt of the Western Carpathians, and indicates the primary source of detrital material in rocks of deeper parts of orogen, characterized especially by the presence of catazonal metamorphites and almost lacking volcanic rocks. Redeposition of heavy minerals from older sediments cannot also be ruled out. The pronounced diagenetic alteration of garnet, if not very scarce in the area of Flysch Belt, could help to explain the earlier observations of wide fluctuations of contents of garnet in heavy mineral concentrates.

Files

Abstract (PDF) - 207.17KB
Fulltext (PDF) - 5.07MB

References

Bingen B, Griffin WL, Torsvik TH, Saeed A (2005) Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17(3): 250-258. https://doi.org/10.1111/j.1365-3121.2005.00609.x

Bónová K, Bóna J, Kováčik M, Laurinc D (2016) Heavy minerals from sedimentary rocks of the Malcov Formation and their palaeogeographic implications for evolution of the Magura Basin (Western Carpathians, Slovakia) during the Late Eocene–Late Oligocene. Geol Q 60: 675-694. https://doi.org/10.7306/gq.1285

Bónová K, Bóna J, Kováčik M, Mikuš T (2018a) Heavy minerals and exotic pebbles from the Eocene flysch deposits of the Magura Nappe (Outer Western Carpathians, Eastern Slovakia): Their composition and implications on the provenance. Turk J Earth Sci 27: 64-88. https://doi.org/10.3906/yer-1707-9

Bónová K, Bóna J, Pańczyk M, Kováčik M, Mikuš T, Laurinc D (2019) Origin of deep-sea clastics of the Magura Basin (Eocene Makovica sandstones in the Outer Western Carpathians) with constraints of framework petrography, heavy mineral analysis and zircon geochronology. Palaeogeogr Palaeoclimat Palaeoecol 514: 768-784. https://doi.org/10.1016/j.palaeo.2018.09.025

Bónová K, Mikuš T, Bóna J (2018b) Is Cr-spinel geochemistry enough for solving the provenance dilemma? Case study from the Palaeogene sandstones of the Western Carpathians (Eastern Slovakia). Minerals 8: 543. https://doi.org/10.3390/min8120543

Bónová K, Spišiak J, Bóna J, Kováčik M (2017) Chromian spinels from the Magura Unit (Western Carpathians, Eastern Slovakia) - Their petrogenetic and palaeogeographic implications. Geol Q 61: 3-17. https://doi.org/10.7306/gq.1292

Dolníček Z, Kandrnál L, Ulmanová J, Vratislavská E, Hojač P (2019) Historická těžba pelosideritů na lokalitě Koryčanská cesta u Moravan, jižní Chřiby. Bull Mineral Petrolog 27: 304-316

Dolníček Z, Kandrnál L, Ulmanová J, Vratislavská E, Hojač P (2020) Mineralogická charakteristika fosforitové konkrece s rodochrozitem z lokality Tabarky, severní Chřiby. Bull Mineral Petrolog 28: 35-43. https://doi.org/10.46861/bmp.28.035

Fitzsimons ICW, Hulscher B (2005) Out of Africa: detrital zircon provenance of central Madagascar and Neoproterozoic terrane transfer across the Mozambique Ocean. Terra Nova 17(3): 224-235. https://doi.org/10.1111/j.1365-3121.2005.00595.x

Froelich PN, Arthur MA, Burnett WC, Deakin M, Hensley V, Jahnke R, Kaul L, Kim K-H, Roe K, Soutar A, Vathakanon C (1988) Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation. Mar Geol 80: 309-343. https://doi.org/10.1016/0025-3227(88)90095-3

Gilíková H, Otava J, Stráník Z (2002) Petrografická charakteristika sedimentů magurského flyše na listu mapy 25-312 Holešov. Geol Výzk Mor Slez v r 2001, 9: 26-29

Grigsby JD (1990Detrital magnetite as a provenance indicator. J Sediment Petrol 60: 940-951

Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2002) Geologická minulost České republiky. Academia Praha

Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusion from primitive rocks. J Petrol 42: 655-671. https://doi.org/10.1093/petrology/42.4.655  

Kropáč K, Dolníček Z, Janál J (2004) Těžké minerály ve zdivu zříceniny hradu Obřany a okolních horninách (Hostýnské vrchy). Geol výzk Mor Slez v r 2003, 11: 91-93

Mange MA, Morton A (2007) Geochemistry of heavy minerals. In: Mange MA, Wright DT (eds): Heavy minerals in use. Developments in sedimentology 58: 323-341. Elsevier, Amsterdam. https://doi.org/10.1016/s0070-4571(07)58013-1

Mange MA, Wright DA (2007) Heavy minerals in use. Developments in sedimentology 58: 1328 pp. Elsevier, Amsterdam

Matýsek D, Bubík M (2012) Fosfát a pelokarbonát z pelitů podslezské jednotky na stavbě silnice R48 u Frýdku-Místku, Česká republika. Geol výzk Mor Slez 19: 88-91. https://doi.org/10.5817/gvms2012-1-2-088

Matýsek D, Skupien P (2005) Fosforitové konkrece ve svrchní křídě slezské jednotky. Geol výzk Mor Slez v r 2004, 12: 34-36

Morton AC (1978) Heavy minerals. In: Sedimentology. Encyclopedia of Earth Science. Springer, Berlin, Heidelberg

Morton AC (1987) Influences of provenance and diagenesis on detrital garnet suites in the Paleocene Forties Sandstone, Central North Sea. J Sediment Res 57: 1027-1032. https://doi.org/10.1306/212f8cd8-2b24-11d7-8648000102c1865d

Morton AC, Hallsworth CR (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment Geol 90: 241-256. https://doi.org/10.1016/0037-0738(94)90041-8

Morton AC, Hallsworth CR (2007) Stability of detrital heavy minerals during burial diagenesis. In: Mange MA, Wright DT (Eds): Heavy Minerals in Use. Developments in Sedimentology 58: 215-245. Elsevier, Amsterdam. https://doi.org/10.1016/s0070-4571(07)58007-6

Otava J, Krejčí O, Sulovský P (1997) První výsledky studia chemismu granátů pískovců račanské jednotky magurského flyše. Geol výzk Mor Slez v r 1996, 4: 39-42

Otava J, Krejčí O, Sulovský P (1998) Výsledky studia detritických granátů křídových sedimentů račanské jednotky magurské skupiny. Geol výzk Mor Slez v r 1997, 5: 29-31

Oszczypko N, Salata D (2005) Provenance analyses of the Late Cretaceous - Paleocene deposits of the Magura basin (Polish Western Carpathians) - Evidence from a study of the heavy minerals. Acta Geol Polon 55: 237-267

Pober E, Faupl P (1988) The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps. Geol Rundsch 77: 641-670. https://doi.org/10.1007/bf01830175

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed.) Microbeam Analysis: 104-106. San Francisco Press, San Francisco

Raiswell R, Fisher QJ (2000) Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. J Geol Soc London 157: 239-251. https://doi.org/10.1144/jgs.157.1.239

Slansky M (1986) Geology of sedimentary phosphates. North Oxford Academic, London

Smale D, Morton AC (1988) Heavy mineral suites of core samples from the McKee Formation (Eocene-Lower Oligocene), Taranaki: implications for provenance and diagenesis. New Zeal J Geol Geophys 30: 299-306. https://doi.org/10.1080/00288306.1987.10552624

Stalder M, Rozendaal A (2004) Apatite nodules as an indicator of depositional environment and ore genesis for the Mesoproterozoic Broken Hill-type Gamsberg Zn–Pb deposit, Namaqua Province, South Africa. Miner Deposita 39: 189-203. https://doi.org/10.1007/s00126-003-0394-8

Stormer JCJr, Pierson MJ, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis. Am Mineral 78: 641-648

Stráník Z (1993) Flyšové pásmo Západních Karpat, autochtonní mesozoikum a paleogén na Moravě a ve Slezsku. In Přichystal A, Obstová V, Suk M (eds) Geologie Moravy a Slezska: 107-122. Přírodovědecká fakulta Masarykovy univerzity Brno

Stráník Z, Hrouda F, Otava J, Gilíková H, Švábenická L (2007) The Upper Oligocene-Lower Miocene Krosno lithofacies in the Carpathian Flysch Belt (Czech Republic): sedimentology, provenance and magnetic fabrics. Geol Carpath 58(4): 321-332

Zapletal J, Bláhová Z, Dolníček Z (2012) K provenienci spodnokarbonských drob použitých jako stavební kámen pro jižní věž kostela sv. Mořice v Olomouci. Zpr Vlast Muz Olom, Vědy přír 303: 59-66