ISSN

print 2570-7337
online 2570-7345

Se and Cu mineralization from Bílá Voda near Javorník (Czech Republic)


Volume 24, issue 2 (2016), pages 161-177

Keywords

Abstract

An interesting Se and Cu mineralization has been found in the dumps of the abandoned uranium occurrence Bílá Voda near Javorník, Rychlebské hory Mountains, Czech Republic.

Uraninite forms abundant aggregates up to 1 - 2 mm in size formed by spherical to hemi-spherical aggregates up to 50 - 100 μm. across. Its chemical composition corresponds to the empirical formula [(U0.57Si0.08)Σ0.65(REE+Y)0.09(Ca0.15Cu0.05Pb0.03Fe0.02)Σ0.25]O1.68. Mineral phase close to coffinite was observed in association with uraninite and Cu minerals as collomorphic aggregates up to 1 mm in size. Beside dominant U (27 - 37 at. %) it contains a very unusual contents of Cu (18 - 25 at. %) and ΣREE+Y (11 - 13 at. %); Si varies in the range 12 - 29 at. %. Chalcopyrite forms crystalline grains up to 1 mm across, aggregates composed by prismatic crystals up to 100 μm in length and altered relics up to 100 μm in association with covelline, bornite, unnamed Cu9Fe7S16, uraninite and Cu-rich coffinite. Its chemical composition can be expressed by the empirical formula Cu1.00Fe0.98(S2.00Se0.02)Σ2.02. Rammelsbergite was found as crystalline aggregates up to 100 μm. For its chemical composition is characteristic NiCo-1 substitution with Co contents in the range 0.18 - 0.44 apfu. Löllingite and safflorite were observed more rarely as grains up to 50 μm in association with rammelsbergite and nickeline. For löllingite, the FeNi-1 substitution with contents of Ni in the range 0.06 až 0.40 apfu is dominant. The chemical composition of safflorite varies especially in Co/Ni/Fe ratios. Nickeline occurs only rarely as aggregates up to 50 μm across in association with löllingite group minerals and uraninite. Its chemical composition corresponds to the empirical formula (Ni0.94Co0.03Fe0.01Cu0.01)Σ0.99(As0.98S0.04)Σ1.02. Silver forms irregular grains up to 30 μm in size in carbonate gangue in association with Ni-Co-Fe arsenides, its empirical formula is (Ag0.99Hg0.01)Σ1.00. Clausthalite occurs as abundant inclusions up to 15 - 20 μm across in bornite, anomalous bornite, digenite, djurleite and covelline. Its chemical composition can be expressed by the empirical formula (Pb0.98Fe0.01Cu0.01)Σ1.00(Se0.96S0.04)Σ1.00. Naumannite was found only rarely as irregular grains and aggregates up to 20 μm in size in association with clausthalite and coffinite. Its empirical formula is (Ag1.97Cu0.03Fe0.01)Σ2.01(Se0.98S0.02)Σ1.00. Bornite forms aggregates up to 500 μm across with abundant tiny clausthalite inclusion; its aggregates are replaced by later digenite and djurleite.

Bornite was also observed as pseudomorphoses after chalcopyrite up to 100 μm in length. Its chemical composition corresponds to the empirical formula Cu4.83Fe0.99(S3.95Se0.05)Σ4.00. Chemically anomalous bornite was found as aggregates up to 200 μm in size partly replaced by later covellite and unnamed Cu9Fe7S16. Its empirical formula Cu3.92Fe0.97(S3.98Se0.02)Σ4.00 is close to ideal composition Cu4FeS4. Digenite occurs as lath-like aggregates up to 100 μm in length strongly altered by later djurleite. Aggregates of digenite and djurleite partly replaced earlier bornite. The chemical composition of digenite can be expressed by the empirical formula(Cu8.98Fe0.02Pb0.01)Σ9.01(S4.90Se0.09)Σ4.99. Djurleite forms aggregates up to 200 μm across with abundant relics of earlier digenite. Its chemical composition corresponds to the empirical formula (Cu30.68Fe0.08Pb0.01)Σ30.77(S15.96S0.27)Σ16.23. Covellite was found in association with uraninite and coffinite as abundant aggregates up to 300 μm in size replacing earlier chalcopyrite and chemically anomalous bornite. Its empirical formula is (Cu1.04Fe0.01)Σ1.05(S0.94Se0.01)Σ0.95. Unnamed Cu sulfide with chemical composition close to Cu9Fe7S16 was observed as elongated or lens-shape crystals up to 20 μm in length in aggregates of earlier covellite and anomalous bornite in association with uraninite and covellite. It also forms elongated crystals and aggregates up to 40 μm in size replacing earlier chemically anomalous bornite. Its chemical composition can be to express by an ideal formula Cu9-xFe7+xS16 (x ±0.5) and by empirical formula Cu9.03(Fe6.99Pb0.02)Σ7.01(S15.89Se0.07)Σ15.96.

Files

Abstract (PDF) - 212.03KB
Fulltext (PDF) - 4.23MB

References

Alexandre P., Kyser K., Layton-Matthews D., Joy B. (2015) Chemical composition of natural uraninite. Can. Mineral. 53, 595-622.

Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C. (1990) Handbook of Mineralogy. Volume I Elements, Sulfides, Sulfosalts. 588 s., Mineral Data Publishing Tuscon.

Constantinou G. (1975) Idaite from the Skouriotissa massive sulfide orebody, Cyprus: its composition and conditions of formation. Am. Mineral. 60, 1013-1018.

Dolníček Z., Fojt B., Prochaska W., Kučera J., Sulovský P. (2009) Origin of the Zálesí U-Ni-Co-As-Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constrainnts. Miner. Deposita 44, 81-97.

Fojt B., Dolníček Z., Kopa D., Sulovský P., Škoda R. (2005) Paragenetická charakteristika hypogenních minerálních asociací uranového ložiska Zálesí u Javorníku ve Slezsku. Čas. Slez. Muz. Opava (A), 54, 223-280.

Fojt B., Tenčík I., Panovský K. (1971) Mineralogický a geochemický výzkum rudních ložisek a drobných výskytů kyzů a rud barevných kovů v oblasti východních a středních Sudet. Ložisko Zálesí u Javorníka – Horní Hoštice – Bílá Voda – Lesní Čtvrť. MS, Závěrečná zpráva dílčího výzkumného úkolu III-2-5/5, Brno.

Gablina I. F., Mozgova N. N., Borodaev Y. S., Stepanova T. V., Cherkashev G. A., Il´in M. I. (2000) Copper sulfide association in recent oceanic ores of the Logachev hydrothermal field (Mid-Atlantic Ridge, 14 degrees 45´ N). Geol. Ore Deposits 42, 296-316.

Goble R. J. (1980) Copper sulfides from Alberta: yarrowite Cu9S8 and spionkopite Cu39S28. Can. Mineral. 18, 511-518.

Goble R. J. (1981) The leaching of copper from anilite and the production of metastable copper sulfide structure. Can. Mineral. 19, 583-592.

Goble R. J., Robinson G. (1980) Geerite, Cu1.60S, a new copper sulfide from Dekalb township, New York. Can. Mineral. 18, 519-523.

Gritsenko Y. D., Spiridonov E. M. (2005) Minerals of the nickeline-breithauptite series from metamorphogenic-hydrotermal veins of the Norilsk ore field. New data on minerals 40, 51-65.

Grønvold F., Westrum E. F. (1980) The anilite/low digenite transition. Am. Mineral. 65, 574-575.

Hatert F. (2003) Occurrence of sulphides on the bornite-idaite join from Vielsalm, Stavelot Massif, Belgium. Eur. J. Mineral. 15, 1063-1068.

Hatert F. (2005) Transformation sequences of copper sulfides at Vielsalm, Stavelot Massif, Belgium. Can. Mineral. 43, 623-635.

Janata M., Zachař Z. (2007): Javornický uran. Historie průzkumu a těžby uranu v Rychlebských horách 1957-1968. Dvůr Králové n. Labem. 95 s.

Janeczek J., Ewing R. C. (1992) Structural formula of uraninite. J. Nucl. Mater. 190, 128-132.

Kolektiv (1989) Prognózní ocenění ČSSR na uran. Strukturní patro krystalinikum. MS, ČSUP, Liberec.

Kolektiv (2003) Rudné a uranové hornictví České republiky. 1-648, Anagram, Ostrava.

Kvaček M. (1969) Selenidy uranových ložisek Českomoravské vrchoviny. MS, kandidátská disertační práce, Kutná Hora.

Litochleb J., Sejkora J., Šrein V., Malec J. (2009) Kašperskohorské zlato (Šumava, Česká republika). Bull. mineral.-petrolog. odd. Nár. Muz. (Praha) 17, 1, 1-13.

Morimoto N., Kato K. (1970) Phase relations of the Cu-S system at low temperatures: stability of anilite. Am. Mineral. 55, 106-117.

Mumme W. G., Sparrow G. J., Walker G. S. (1988) Roxbyite, a new copper sulphide mineral from the Olympic Dam deposit, Roxby Downs, South Australia. Mineral. Mag. 52, 323-330.

Okrusch M., Lorenz J. A., Weyer S. (2007) The genesis of sulfide assemblages in the former Wilhemine mine, Spessart, Bavaria, Germany. Can. Mineral. 45, 723-750.

Ondruš P., Veselovský F., Gabašová A., Hloušek J., Šrein V., Vavřín I., Skála R., Sejkora J., Drábek M. (2003) Primary minerals of the Jáchymov ore district. J. Czech Geol. Soc. 48, 3-4, 19-147.

Parviainen A., Gervilla F., Melgarejo J. C., Johanson B. (2008) Low-temperature, platinum-groups-bearing Ni arsenide assemblage from the Atrevida mine (Catalonian Coastal Ranges, NE Spain). N. Jb. Mineral. Abh. 181, 1, 33-49.

Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.

Sejbal J., Záliš Z. (1964) Zpráva o ukončení průzkumných prací na úseku Bílá Voda. MS, GP Příbram.

Sejkora J., Kopecký S., Pauliš P., Kopecký S. jun. (2015) Ni-Sb mineralizace z rudního revíru Michalovy Hory (Česká republika). Bull. mineral.-petrolog. odd. Nár. Muz. (Praha) 23, 2, 129-146.

Shimazaki H., Clark L. A. (1970) Synthetic FeS2-CuS2 solid solution and fukuchilite-like minerals. Can. Mineral. 10, 648-664.

Sillitoe R. H., Clark A. H. (1969) Copper and copper-iron sulfides as the initial products of supergene oxidation, Copiapó mining district, northern Chile. Am. Mineral. 54, 1684-1710.

Škácha P., Sejkora J. (2013) Výskyt cinnabaritu s mikroskopickým gortdrumitem na ložisku Vrančice u Příbrami (Česká republika). Bull. mineral.-petrolog. odd. Nár. Muz. (Praha) 21, 1, 57-61.

Števko M., Sejkora J., Litochleb J., Macek I., Bačík P. (2013) Krutovit a sprievodné minerály z lokality Dobšiná-Teliatko (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 21, 1, 1-14.