Namibite and accompanying mineralization of fluorite vein Nadějná near Kotlina in the Krušné hory Mts. (Czech Republic)
Keywords
Abstract
Supergene Bi mineralization with namibite, bismutoferrite and bismutite was found on a quartz-fluorite vein Nadějná near the Kotlina in the Krušné hory Mts. (Czech Republic). Namibite forms green coatings on the cracks of fluorite veins and more rarely dark green glassy lustrous, hedgehog-shaped aggregates up to 0.2 mm in size formed by flat needle-like crystals. The unit-cell parameters of namibite refined from the powder X-ray data are: a 6.2096(18), b 7.395(2), c 7.4708(18) Å, α 90.1(2)°, β 108.73(15)°, γ 107.45(19)° and V 308.09(15) Å3. Its chemical analyses correspond to the empirical formula (Cu0.93Fe0.03Ca0.01)Σ0.97(BiO)1.79(V0.97P0.02Cr0.01)Σ1.00O4(OH)0.75. Bismutoferrite forms yellow powdery aggregates in cracks and in small cavities of fluorite. Its chemical analyses correspond to the empirical formula (Fe1.91 Cu0.03Mg0.02Al0.02Ca0.01)Σ1.99Bi0.92(SiO4)2.00(OH)0.68. Bismutite forms yellow-white pseudomorphoses probably after the acicular crystals of primary Bi sulfide (emplectite or bismuthinite) up to 2 mm long in the fluorite vein. Study of Raman spectra was performed for all studied minerals.
Files
References
Borisova VV, Voloshin AV, Kompanchenko AA, Selivanova EA, Bazay AV (2019) Namibite from Alakurtti Pegmatites, Kola Region. Geol Ore Depos 61(7): 647-653. https://doi.org/10.1134/s1075701519070043
Frost RL, Bahfenne RL, Čejka J, Sejkora J, Plášil J, Palmer SJ (2010) Raman and infrared study of phyllosilicates containing heavy metals (Sb, Bi): bismutoferrite and chapmanite. J Raman Spectrosc 41: 814-819. https://doi.org/10.1002/jrs.2512
Frost RL, Čejka J, Sejkora J, Plášil J, Reddy BJ, Keeffe EC (2011) Raman spectroscopic study of a hydroxy-arsenate mineral containing bismuth - atelestite Bi2O(OH)(AsO4). Spectrochim Acta A 78: 494-496. https://doi.org/10.1016/j.saa.2010.11.016
Frost RL, Henry DA, Weiner ML, Martens W (2006) Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite with comparison to (VO4)3- bearing minerals namibite, pottsite and schumacherite. J Raman Spectrosc 37: 722-732. https://doi.org/10.1002/jrs.1499
Hardcastle FD, Wachs IE (1992) The molecular structure of bismuth oxide by Raman spectroscopy. J Solid State Chem 97: 319-331. https://doi.org/10.1016/0022-4596(92)90040-3
Grice JD (2002) A solution of the crystal structures of bismutite and beyerite. Can Mineral 40: 693-698. https://doi.org/10.2113/gscanmin.40.2.693
Chrt J (1962) Studie o perspektivách průzkumu nových fluoritových a fluorito-barytových ložisek v ČSSR. MS GP Praha
Chrt J (1973) Fluoritové a barytové suroviny Českého masívu 512 0311 012. MS Geoindustria Praha
Chukanov NV, Vigasina MF (2020) Vibrational (Infrared and Raman) spectra of minerals and related compounds. Springer. 1-1376. https://doi.org/10.1007/978-3-030-26803-9
Jones GC, Jackson B (1993) Infrared transmission spectra of carbonate minerals. Chapman and Hall London. 1-256.
Kolitsch U, Giester G (2000) The crystal structure of namibite, Cu(BiO)2VO4(OH), and revision of its symmetry. Am Mineral 85: 1298-1301. https://doi.org/10.2138/am-2000-8-923
Laugier J, Bochu B (2011) LMGP-Suite of Programs for the Interpretation of X-ray Experiments. http://www.ccp14.ac.uk/tutorial/lmgp, přístup duben 2011
Lienert H (1971) Závěrečná zpráva Krušné hory - střed 512 0311 004, surovina fluorit. MS Geoindustria Praha
Mayerová L, Mayer P (1967) Závěrečná zpráva, Krušné hory, prospekce 513 311 001, surovina fluorit. MS archiv ČGS-Geofond, P 20608
Mrázek Z, Veselovský F, Hloušek J, Moravcová H, Ondruš P (1994) Redefinition of namibite, Cu(BiO)2VO4OH. N Jb Mineral, Mh 481-488
Ondruš P, Veselovský F, Hloušek J, Skála R, Vavřín I, Frýda J, Čejko J, Gabašová A (1997) Secondary minerals of the Jáchymov (Joachimsthal) ore district. J Czech Geol Soc 42( 4): 3-76
Plášil J, Kampf AR, Sejkora J, Čejka J, Škoda R, Tvrdý J (2018) Horákite, a new hydrated bismuth uranyl-arsenate-phosphate mineral from Jáchymov (Czech Republic) with a unique uranyl-anion topology. J Geosci 63: 265-276. https://doi.org/10.3190/jgeosci.267
Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106
Sejkora J, Pauliš P, Gramblička R, Malíková R, Pour O, Dolníček Z, Ulmanová J, Vrtiška L (2019a) Nově zjištěná Bi-Co-Ni-As-U-V mineralizace přísečnického rudního revíru v Krušných horách (Česká republika). Bull Mineral Petrolog 27(1): 1-37
Sejkora J, Pauliš P, Gramblička R, Pour (2019b) Mottramit a Mn-oxidická mineralizace z přísečnického rudního revíru v Krušných horách (Česká republika). Bull Mineral Petrolog 27(2): 374-382
Selvamani T, Raj BGS, Anandan S, Wu JJ, Ashokkumar M (2016) Synthesis of morphology-controlled bismutite for selective applications. Phys Chem Chem Phys 18: 7768-7779. https://doi.org/10.1039/c5cp07523h
Škácha P, Plášil J, Horák V (2019) Jáchymov mineralogická perla Krušnohoří. Academia, Praha. 1-688.
Taylor R, Sunders S, Lopata VJ (1984) Structure, spectra, and stability of solid bismuth carbonates. Can J Chem 62: 2863-2873. https://doi.org/10.1139/v84-484
Uehara S, Shirose Y (2013) Namibite and hechtsbergite from the Nagatare mine, Fukuoka Prefecture, Japan. J Mineral Petrolog Sci 108(2): 105-110. https://doi.org/10.2465/jmps.121022d
von Knorring O, Sahama TG (1981) Namibite, a new copper - bismute - vanadian mineral from Namibia. Schweiz mineral petrogr Mitt 61: 7-12