print 2570-7337
online 2570-7345

Bendadaite from Krásno near Horní Slavkov (Czech Republic), description and Raman spectroscopy



A rare Fe2+-Fe3+ dominant arsenate of the arthurite group, bendadaite, was determined at two samples from an abandoned Huber open pit in the Krásno ore district near Horní Slavkov, Slavkovský les area (Czech Republic). Bendadaite occurs there as brownish to olive green crystalline aggregates up to 2 - 6 mm in size in cavities of quartz gangue. The aggregates are composed by elongate prismatic crystals up to 100 - 200 μm in length, partly in radial arrangement. It is opaque to semi-translucent (aggregates) to translucent (thin fragments). It has vitreous to subadamantine (crystals) or greasy to dull (aggregates) lustre. Bendadaite is monoclinic, space group P21/c, with the unit-cell parameters refined from X-ray powder diffraction data: a 10.183(2), b 9.672(2), c 5.536(1) Å, β 94.15(2)°, V 543.8(1) Å3 (sample NM) and a 10.175(2), b 9.682(2), c 5.532(1) Å, β 94.13(2)°, V 543.6(1) Å3 (sample JT). The chemical composition of bendadaite agrees with general stoichiometry of the arthurite group minerals and corresponds to the following empirical formulae: (Fe0.52Zn0.25Cu0.02Mg0.02 0.19)Σ1.00(Fe3+1.80Al0.20)Σ2.00 [(AsO4)1.66(PO4)0.34]Σ2.00(OH)2·4H2O (sample NM) and (Fe0.63Zn0.26 0.11)Σ1.00(Fe3+1.87Al0.13)Σ2.00 [(AsO4)1.62(PO4)0.38]Σ2.00(OH)2·4H2O (sample JT). The Raman spectra of both studied bendadaite samples as well as tentative assignment of observed bands are given in this paper. Origin of bendadaite from Krásno is connected to in-situ supergene weathering of primary arsenopyrite, sphalerite and phosphates and high activity of arsenate and Fe2+, Fe3+ ions in acidic supergene fluids


Abstract (PDF) - 191.97KB
Fulltext (PDF) - 1.09MB


Beran P, Sejkora J (2006) The Krásno Sn-W ore district near Horní Slavkov: Mining history, geological and mineralogical characteristics. J Czech Geol Soc 51: 3 – 42

Breiter K, Škoda R, Veselovský F (2009) Unusual P-, Li- and Sn-rich pegmatite from Vernéřov near Aš, Czech Republic. Bull mineral-petrolog Odd Nár Muz (Praha) 17(1): 41-59 (in Czech)

Burnham Ch W (1962) Lattice constant refinement. Carnegie Inst Washington Year Book 61: 132-135

Calvo M (2015): Minerales y Minas de España. Vol. VII, Fosfatos, arseniatos y vanadatos. Escuela Técnica Superior de Ingenieros de Minas de Madrid - Fundación Gómez Pardo. 1-479

Cesbron F, Romero SM, Williams SA (1981) La mapimite et lˋojuélaïte, deux nouveaux arséniates hydratés de zinc et de fer de la mine Ojuela, Mapimi, Mexique. Bull Minéral 104: 582-586

Davis RJ, Hey MH (1969) The cell-contents of arthurite redetermined. Mineral Mag 37: 520-521.

Frost RL, Duong L, Martens W (2003) Molecular assembly in secondary minerals – Raman spectroscopy of the arthurite group species arthurite and whitmoreite. N Jb Mineral, Mh 2003: 223-240

Hughes JM, Bloodaxe ES, Kobel KD, Drexler JW (1996) The atomic arrangement of ojuelaite, ZnFe3+2 (AsO4)2(OH)2.4H2O. Mineral Mag 60: 519-521

Jambor JL, Viñals J, Groat LA, Raudsepp M (2002) Cobaltarthurite, CoFe3+2(AsO4)2(OH)2.4H2O, a new member of the arthurite group. Can Mineral 40: 725-732

Kampf AR (2005) The crystal structure of cobaltarthurite from the Bou Azzer district, Morocco: the location of hydrogen atoms in the arthurite structure-type. Can Mineral 43: 1387-1391

Keller P, Hess H (1978) Die Kristallstruktur von Arthurit, CuFe3+2[(H2O)4|(OH)2|(PO4)2]. N Jb Mineral, Abh 133: 291-302

Kolitsch U, Atencio D, Chukanov NV, Zubkova NV, Menezes Filho LAD, Coutinho JMV, Birch WD, Schlüter J, Pohl D, Kampf AR, Steele IM, Favreau G, Nasdala L, Möckel S, Giester G, Pushcharovsky YD (2010) Bendadaite, a new iron arsenate mineral of the arthurite group. Mineral Mag 74(3): 469-486

Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H×××O hydrogen bond lengths in minerals. Monat Chem 130: 1047-1059

Matsubara S, Miyawaki R, Shigeoka M, Tajima H, Nishida K, Fujiwara Y (2009) Bendadaite and iron arsenate minerals from the Kiura mine, Oita Prefecture, Japan. 2009 Annual Meeting of Japan Association of Mineralogical Sciences, Abstracts Volume, Abs. R4-06, p. 100.

Meisser N (2010) Sur la présence de bendadaite à la Villatte-Haute (Monts d‘Amabazac, Haute-Vienne). Le Règne Minéral 94: 40

Mielke Z, Ratajczak H (1972) The force constants and vibrational frequencies of orthoarsenates. Bulletin de l´Academie Polonaise des Sciences, Série des Sciences Chimiques 20: 265-270

Mills SJ, Kolitsch U, Birch WD, Sejkora J (2008) Kunatite, CuFe2(PO4)2(OH)2·4H2O, a new member of the whitmoreite group, from Lake Boga, Victoria, Australia. Austral J Mineral 14: 3-12

Mills SJ, Kampf AR, Sejkora J, Adams PM, Birch WD, Plášil J (2011) Iangreyite: a new secondary phosphate mineral closely related to perhamite. Mineral Mag 75: 327-336

Mills SJ, Sejkora J, Kampf AR, Grey IE, Bastow TJ, Ball NA, Adams PM, Raudsepp M, Cooper MA (2012) Krásnoite, the fluorophosphate analogue of perhamite, from the Huber open pit, Czech Republic and the Silver Coin mine, Nevada, USA. Mineral Mag 76: 625 - 634

Moore PB, Kampf AR, Irwing AJ (1974) Whitmoreite, Fe2+Fe3+2(OH)2(H2O)4[PO4]2, a new species: its description and atomic arrangement. Am Mineral 59: 900-905

Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds Part A Theory and applications in inorganic chemistry. John Wiley and Sons Inc. Hoboken, New Jersey

Ondruš P (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enchede.

Palmer SJ, Frost RL (2011) The structure of the mineral arthurite CuFe3+(AsO4,PO4,SO4)2(OH)2.4H2O. J Molec Struct 994: 283-288

Peacor DR, Dunn PJ, Simmons WB (1984) Earlshannonite, the Mn analogue of whitmoreite, from North Carolina. Can Mineral 22: 471-474

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco: 104-106

Raudsepp M, Pani E (2002) The crystal structure of cobaltarthurite, Co2+Fe3+2(AsO4)2(OH)2· 4H2O: a Rietveld refinement. Can Mineral 40(2): 733-737

Rieck B, Kolitsch U, Voudouris P, Giester G, Tzeferis P (2018) Weitere Neufunde aus Lavrion, Griechenland. Mineralien-Welt 29(5): 32-77

Sejkora J, Ondruš P, Fikar M, Veselovský F, Mach Z, Gabašová A (2006a) New data on mineralogy of the Vysoký Kámen deposit near Krásno, Slavkovský les area, Czech Republic. J Czech Geol Soc 51: 43-55

Sejkora J, Ondruš P, Fikar M, Veselovský F, Mach Z, Gabašová A, Škoda R, Beran P (2006b) Supergene minerals at the Huber stock and Schnöd stock deposits, Krásno ore district, the Slavkovský les area, Czech Republic. J Czech Geol Soc 51: 57-101

Sejkora J, Škoda R, Ondruš P (2006c) New naturally occurring mineral phases from the Krásno-Horní Slavkov area, western Bohemia, Czech Republic. J Czech Geol Soc 51: 159–187

Sejkora J, Škoda R, Ondruš P, Beran P, Süsser C (2006d) Mineralogy of phosphate accumulations in the Huber stock, Krásno ore district, Slavkovský les area, Czech Republic. J Czech Geol Soc 5: 103-147

Sejkora J, Plášil J, Filip J (2011) Plimerite from Krásno near Horní Slavkov ore district, Czech Republic. J Geosci 56(2): 215-229

Sejkora J, Grey IE, Kampf AR, Price JR, Čejka J (2016) Tvrdýite, Fe2+Fe23+Al3(PO4)4(OH)5(OH2)4·2H2O, a new phosphate mineral from Krásno near Horní Slavkov, Czech Republic. Mineral Mag 80(6): 1077-1088

Staněk J (1988) Paulkerrite and earlshanonnite from pegmatite near Dolní Bory (western Moravia, Czechoslovakia). Čas Morav Muz, Vědy přír 73: 29-34

Staněk J (1997) Mineral associations of more significant pegmatite veins at Hatě near Dolní Bory, western Moravia. Acta Mus Morav, Sci natur 82: 3-19 (in Czech)

Vansant FK, Van Der Veken BJ, Desseyn HO (1973) Vibrational analysis of arsenic and its anions. I. Description of the Raman spectra. J Molec Struct 15: 425-437

Vrtiška L, Sejkora J, Malíková R (2018) Arthurite from Huber stock in Krásno near Horní Slavkov - the first occurrence in the Czech Republic. Bull Mineral Petrolog 26(1): 74-77 (in Czech)

Yvon K, Jeitschko W, Parthé E (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J Appl Cryst 10: 73-74