print 2570-7337
online 2570-7345

Recent formation of rozenite on fossil coal mass from locality Pecínov near Nové Strašecí (Czech Republic)

Volume 22, issue 2 (2014), pages 356-362



Recently formed hydrated Fe2+ sulfate, rozenite, was determined at samples from the locality Pecínov near Nové Strašecí (central Bohemia, Czech Republic). It occurs as rich irregular crusts at the area about 5 x 10 cm with thickness up to 1.5 cm formed by bend to twisted fibres with diameter up to 2 mm and length to 0.5 - 1 cm. Fresh rozenite is fully transparent, colorless some with bluish or greenish tint; in course of some weeks, while the climatic conditons changed due to disruption of the enclosure, the aggregates turned white and became translucent to opaque. Rozenite is monoclinic, space group P21/n, with unit-cell parameters refined from X-ray powder diffraction data: a 5.9651(2), b 13.6104(5), c 7.9653(2) Å, β 90.488(3)o and V 646.65(3) Å3. Chemical analyses of rozenite, CaO 0.01, FeO 31.64, CuO 0.11, Al2O3 0.01, P2O5 0.02, SO3 35.92, H2O(calc.) 32.11, total 99.82 wt. % yielded to the empirical formula Fe0.99(SO4)1.01.4H2O. Rozenite from Pecínov is recent product of rapid weathering of pyrite finely dispersed in the coal mass. It imerges under stable rH (<55%) conditions following abrupt exsication and short-term deoxidisation.


Abstract (PDF) - 193.30KB
Fulltext (PDF) - 3.39MB


Baltatzis E., Stamatakis M. G., Kyriakopoulos K. G. (1986) Rozenite and melanterite in lignitic layers from the Voras mountain, western Macedonia, Greece. Mineral. Mag. 50, 737-739.

Baur W. H. (1962) Zur Kristallchemie der Salzhydrate. Die Kristallstrukturen von MgSO4.4H2O (Leonhardtit) und FeSO4.4H2O. Acta Cryst. 15, 815-826.

Brett C. E., Baird G. C. (1986) Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios, 207-227.

Burnham Ch. W. (1962) Lattice constant refinement. Carnegie Inst. Washington Year Book 61, 132-135.

Dobeš P., Malý K. (2001) Mineralogie polymetalických rudních výskytů ve střední části havlíčkobrodského rudního revíru. Vlastivěd. Sbor. Vysočiny, Odd. Věd přír., 15, 51-85.

Harapát L. (1986) Sírany železa z Chvaletic II. Čas. Mineral. Geol. 31, 1, 99.

Harapát L., Med L. (1984) Rozenit - nový minerál z hald na Kaňku. Čas. Mineral. Geol. 29, 2, 213.

Chou I-M., Seal II R. R., Hemingway B. S. (2002) Determination of melanterite-rozenite nad chalcanthite-bonattite equilibria by humidity measurement at 0.1 MPa. Am. Mineral. 87, 108-114.

Khawaja I. U. (1975) Pyrite in the Springfield Coal Member (V), Petersburg Formation, Sullivan County, Indiana. Geol. surv. spec. report 9, Department of natural resources, 1-24.

Košťák M., Sklenář J., Čech S., Frank J., Ekrt B., Cápová A., Kubajko M., Mazuch M., Kvaček J. (2013) Ammonites, biostratigraphy and bio-events of the Pecínov Member (Upper Cenomanian, Bohemian Cretaceous Basin). In: Žák J., Zulauf G., Röhling H.-G (ed.): Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften SDGG, svazek 82. s. 45, Schweizerbart, Stuttgart.

Kolesar P. (1998) Rozklad pyritu a markasitu ve sbírkách a možnosti konzervace. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 6, 307-310.

Newman A. (1998) Pyrite oxidation and museum collections: A review of theory and conservation treatments. Geol. Curator 6 (10), 363-371.

Ondruš P. (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enchede.

Ondruš P., Veselovský F., Hloušek J., Skála R., Vavřín I., Frýda J., Čejka J., Gabašová A. (1997) Secondary minerals of the Jáchymov (Joachimsthal) ore district. J. Czech Geol. Soc. 42, 3-76.

Peterson R. C., Grant A. H. (2005) Dehydration and crystallization reactions of secondary sulfate minerals found in mine waste: in situ powder-diffraction experiments. Can. Mineral. 43, 1171-1181.

Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.

Raiswell R., Berner R. A. (1985) Pyrite formation in euxinic and semi-euxinic sediments. Amer. J. Sci., 285(8), 710-724.

Uličný D., Hladı́ková J., Attrep M. J. jr., Čech S., Hradecká L., Svobodová M. (1997a) Sea-level changes and geochemical anomalies across the Cenomanian-Turonian boundary: Pecı́nov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1), 265-285.

Uličný D., Kvaček J., Svobodová M., Špičáková, L. (1997b) High-frequency sea-level fluctuations and plant habitats in Cenomanian fluvial to estuarine succession: Pecínov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology, 136(1), 165-197.

Uličný D., Špičáková L. (1996) Response to high frequency sea-level change in a fluvial to estuarine succession: Cenomanian palaeovalley fill, Bohemian Cretaceous Basin. Geol. Soc., London, Spec. Publ., 104(1), 247-268.

Wilkin R. T., Barnes H. L. (1997) Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta, 61(2), 323-339.

Yvon K., Jeitschko W., Parthé E. (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J. Appl. Cryst. 10, 73-74.

Zodrow E. L., Wiltshire K., McCandlish K. (1979) Hydrated sulfates in the Sydney coalfield of Cape Breton, Nova Scotia; II, pyrite and its alteration products. Can. Mineral. 17, 63-70.