https://doi.org/10.46861/bmp.29.249

Výrazně zonální tetraedrit-tennantit z Kramolína, rudní revír Michalovy Hory (Česká republika)

Significantly zonal tetrahedrite-tennantite from Kramolín, Michalovy Hory ore district (Czech Republic)

Luboš Vrtiška* a Jiří Sejkora

Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9 - Horní Počernice; *e-mail: lubos.vrtiska@nm.cz

VRTIŠKA L, SEJKORA J (2021) Výrazně zonální tetraedrit-tennantit z Kramolína, rudní revír Michalovy Hory (Česká republika). Bull Mineral Petrolog 29(2): 249-254 ISSN 2570-7337

Abstract

The crystals of significantly zonal tetrahedrite-tennantite were found in the mine dump material of the Grubenwall 42 mine, Kramolín, the Michalovy Hory ore district, western Bohemia (Czech Republic). Tetrahedrite-tennantite forms layer of tetrahedral, partly corroded crystals up to 1 mm in size on a crust of crystalline quartz in association with chalcopyrite and cerussite. Individual zones in oscillatory zoned crystals are represented by three members of tetrahedrite group minerals - tetrahedrite-(Zn), tennantite-(Zn) and rare tennantite-(Fe). The observed range of AsSb₋₁ substitution is unusual within a single crystal and indicates high variability of the As/Sb ratio in the hydrothermal fluids.

Key words: tetrahedrite group minerals, tetrahedrite-(Zn), tennantite-(Zn), tennantite-(Fe) chemical compositon, Kramolín, Michalovy Hory ore district, Czech Republic

Obdrženo 1. 9. 2021; přijato 6. 11. 2021

Úvod

Rudní revír Michalovy Hory (německy Michelsberg) se nachází v oblasti mezi obcemi Dolní Kramolín, Chodová Planá, Výškov a Michalovy Hory, jv. od Mariánských Lázní (západní Čechy, Česká republika). Počátky těžby stříbrných rud jsou nejisté, první písemné údaje o těžbě pocházejí až z roku 1505. Větší rozvoj těžby stříbrných rud byl však zaznamenán až na konci 16. století. K další kulminaci báňských aktivit došlo v závěru 17. století, kdy byla založena štola Jana Křtitele (1690). V roce 1721 se pracovalo na dole Nové štěstí s radostí (Werk Neu Glück mit Freuden) a v tomto období též vznikly pozoruhodné dědičné štoly Zikmund, Barbora a především 3 km dlouhá štola Rakouský dům, která vedla od Dolního Kramolína do šachty Štěstí. V 19. století byly uskutečněny nové pokusy o těžbu Ag, Pb, Ni a Co rud, ta však byla roku 1887 zastavena (Andrle 1997). Poslední etapa intenzivnějšího dolování byla zahájena v roce 1906 na dole Austria u Chodové Plané, kde se pracovalo do roku 1910. V letech 1911 - 1924 byl opět otevřen důl Neu Glück společností Deutsch-Böhmischen Erzbergbau AG. V roce 1935 byly na tomto 80 m hlubokém dole veškeré práce ukončeny. V letech 1937 - 1939 byl na žilách jv. od Kramolína pokusně těžen baryt. V poválečném období, v letech 1953 - 1959, tu probíhaly průzkumné práce na uranové rudy (Jáchymovské doly) ve štolách Rakouský dům, Štěpán Šlik, Sv. Jan Křtitel, Malá a Velká Barbora, Jakub, Minerálka a Michal s negativním výsledkem (Fiala, Mrázek 1977).

Geologická a mineralogická situace

Oblast Michalových Hor je součástí západní části tepelsko-barrandienské oblasti Českého masivu. Převládají zde mezozonálně metamorfované sedimentární horniny mladoproterozoického stáří (biotitické až dvojslídné ruly někdy s granátem a sillimanitem, kvarcitické pararuly, granátické amfibolity až gabra, jemně zrnité amfibolity s epidotem a krystalické vápence), v severní části se silným podílem bazických intruzív, efuzív a jejich tufů, obsažených v mariánskolázeňském metabazitovém tělese. Komplex hornin je zvrásněn a směry břidličnatosti jsou většinou směru SV - JZ. Pro lokalizaci zrudnění je rozhodující zlomová tektonika. Podél západního okraje území probíhá nejdůležitější struktura - mariánskolázeňský zlom směru S - J, zpeřený několika zlomy směru SZ - JV, tvořících k JV hrásťovou stavbu. Rudní žíly jsou seskupeny do několika žilných uzlů, zejména v pokleslých krách této hrásťové stavby, a většinou se zlomy směru SZ - JV souvisejí (Fiala, Mrázek 1977). Zdejší mineralizace na žilách směrů SZ - JV a S - J je velmi komplexní.

Fiala a Mrázek (1977) dělí rudní revír Michalovy Hory na tři základní celky (žilné uzly). Jedná se o žilný uzel Michalovy Hory, kde bylo předmětem těžby kolem 12 žil převážně s Ni-Co zrudněním, žilný uzel mezi Výškovem a Dolním Kramolínem, tvořený asi 20 žilami a žilný uzel východně od Chodové Plané, tvořený dvěma rudními žilami a několika odžilky.

Žilnou výplň ložisek v blízkém okolí Michalových Hor tvořily především baryt a karbonáty s Ni-Co, méně Ag-Pb -Zn zrudněním. Žíly byly těženy štolami Sv. Michal, Jan

Obr. 1 Odval Grubenwall 42 u Dolního Kramolína, foto R. Gramblička, 2015.

Obr. 2 Mapa s vyznačením pozice odvalu Grubenwall 42, upraveno podle https://mapy.cz.

Obr. 3 Studovaný vzorek křemenné žiloviny s tetraedritem-tennantitem, rozměry 8 × 5 cm, foto L. Vrtiška.

Křtitel, Velká a Malá Barbora a Jakub. Na haldě štoly Sv. Michala byly zjištěny až 20 mm velké zrnité agregáty tennantitu-(Zn) (Pauliš 1990). Na haldě štoly Sv. Michal byly zjištěny Ni-Co rudy (nikelín, skutterudit a niklskutterudit). V minulosti se zde vyskytovaly i drátkovité agregáty ryzího stříbra a ušlechtilé stříbrné rudy (pyrargyrit, proustit, stefanit a argentit). Sporadický byl antimonit (Fiala, Mrázek 1977). Nově byla studovaná Ni-Sb mineralizace z haldového materiálu ze štoly Jan Křtitel. Vedle běžných sulfidů (chalkopyritu, pyritu, galenitu a sfaleritu), drobných plíškovitých agregátů akantitu, ryzího stříbra a drobných zrn pyrargyritu, zde byla nově zjištěna Ni-Sb mineralizace s nikelínem, rammelsbergitem, breithauptitem, gersdorffitem, milleritem a violaritem. Z dalších rudních minerálů byla analyzována až několik cm velká, supergenně alterovaná zrna niklskutteruditu, malá zrna saffloritu, ryzí bismut, stefanit a tetraedrit-(Fe) (Sejkora et al. 2015). Nověji zde byl zjištěn i výskyt annabergitu, hörnesitu, pikrofarmakolitu a sádrovce (Vrtiška et al. 2017).

Žilný uzel mezi Výškovem a Dolním Kramolínem (resp. v jv. okolí Dolního Kramolína) je tvořen žilami téměř výlučně s Ag-Pb-Zn zrudněním v křemenné žilovině. Hlavními důlními díly byly Nová jáma (Deutsch -Böhmische Erzbergbau AG), Staré štěstí s radostí, Štěpán, Sadová jáma, Mladé Sasko a Svatá Anna. K mineralogicky nejzajímavějším patří halda dolu Staré štěstí s radostí, kde lze objevit křemennou žilovinu se zrnitým chalkopyritem, pyritem a vzácně s pyrhotinem. V drobných dutinách se objevují i růžový ankerit a dolomit se zrny galenitu a sfaleritu. Stříbronosný galenit někdy vytváří až 1 cm velké krychlové krystaly. Vzácně se v žilovině objevují i Ag-rudy - pyrargyrit, argentit a ryzí stříbro. Poněkud izolované postavení má žíla 42 nacházející se ve svahu j. od Dolního Kramolína (Fiala, Mrázek 1977), kde byly nověji zjištěny výskyty supergenní mineralizace s linaritem, malachitem, azuritem (Pauliš et al. 2012), brochantitem, cerusitem, devillinem, mimetitem, pyromorfitem a wroewolfeitem (Vrtiška et al. 2017)

Třetím rudním okrskem je oblast východního okolí Chodové Plané. Tento rudní okrsek je tvořen křemen -karbonátovými žilami s Cu-Pb-Zn zrudněním, které bylo těženo dolem Austria a štolami Sv. Ondřej, Sv. Tomáš a Sv. Antonín. V žilovině se objevují zrnité agregáty galenitu a pyritu, v menší míře sfaleritu. Gramblička (2015) objevil nově na starých pozůstatcích po dolování v okolí dolu Austria křemennou žilovinu se zrnitými agregáty a krystaly galenitu a sfaleritu, které doprovázejí chalkopyrit, Co-Ni arsenidy, Ag-minerály (akantit apod.) s produkty supergenní přeměny - pravděpodobným jarositem, Co-köttigitem, aragonitem a miniem. Z haldového materiálu štoly Sv. Antonín byl popsán výskyt vzácného schultenitu v asociaci s köttigitem (Vrtiška et al. 2017).

Charakteristika nálezu

Nově studovaný vzorek minerálů skupiny tetraedritu pochází z nevelkého zašlého odvalu Grubenwall 42 (důl Gang 42; obr. 1; GPS souřadnice: 49.9087125° N, 12.7524797° E), nacházejícího se cca 300 m jv. od Dolního Kramolína (obr. 2), kde ho v roce 2014 nalezl sběratel Jiří Smysl. Jedná se o kavernózní křemennou žilovinu o velikosti 8 × 5 cm, obsahující ostrohranné úlomky rulových hornin. Spodní část vzorku je tvořena vrstvou černého kolomorfního sfaleritu o tloušťce okolo 1 mm. Vedle úlomků hornin obsahuje křemenná žilovina zrna chalkopyritu a hnědočerného cerusitu. Tetraedrit-tennantit tvoří vrstvu lesklých, ocelově šedých, částečně korodovaných tetraedrických krystalů o velikosti do 1 mm, které nasedají na vrstvu drobných krystalů křemene.

Chemické složení

Chemické složení bylo kvantitativně studováno pomocí elektronového mikroanalyzátoru Cameca SX100 (Národní muzeum, Praha, analytik J. Sejkora) za podmínek: vlnově disperzní analýza, napětí 25 kV, proud 20 nA, průměr svazku 1 μm, použité standardy: Ag (AgLα), Bi (Bi*M*β), CdTe (CdLα), Co (Co*K*α), CuFeS₂ (Cu*K*α), FeS₂ (Fe*K*α, *SK*α),

- **Obr. 5** Tetraedrické krystaly tetraedritu-tennantitu na krystalech křemene, šířka záběru 4 mm, foto L. Vrtiška.
- Obr. 6 Výrazně zonální krystal tetraedritu-tennantitu z odvalu Grubenwall 42 Kramolín; světlejší zóny obsahují více Sb, šířka obrázku 1 mm, BSE foto J. Sejkora.

Obr. 4 Shluky lesklých, korodovaných tetraedrických krystalů tetraedritu-tennantitu se zrny chalkopyritu a krystaly křemene, šířka záběru 8 mm, foto L. Vrtiška.

HgTe (Hg $M\alpha$), Mn (Mn $K\alpha$), NaCl (CI $K\alpha$), NiAs (As $L\beta$), Ni (Ni $K\alpha$), PbS (Pb $M\alpha$), PbSe (Se $L\alpha$), PbTe (Te $L\alpha$), Sb₂S₃ (Sb $L\alpha$) a ZnS (Zn $K\alpha$). Obsahy výše uvedených prvků, které nejsou zahrnuty v tabulkách, byly kvantitativně analyzovány, ale zjištěné obsahy byly pod detekčním limitem (cca 0.03 - 0.08 hm. % pro jednotlivé prvky). Získaná data byla korigována za použití algoritmu PAP (Pouchou, Pichoir 1985).

Skupina tetraedritu patří mezi nejvíce komplexní izotypní série mezi sulfosolemi v přírodě, což je vyvoláno zejména řadou možných izo- a heterovalentních substitucí (Moëlo et al. 2008). Obecný vzorec minerálů této skupiny je možno zjednodušeně vyjádřit jako ^{M(2)}A_s ^{M(1)}(B₄C₂)₂₆^{X(3)}X₄^{S(1)}Y₁₂^{S(2)}Z₁, kde v *A* pozici vystupují Cu⁺, Ag⁺, □ (vakance); možné jsou ve spojení s vakancemi v pozici *Z* též skupiny (Ag₆)⁴⁺; v pozici *B* pak Cu⁺ nebo Ag⁺ v tetraedrické koordinaci; pozice *C* je obecně obsazována dvojmocnými prvky (typicky Zn²⁺ nebo Fe²⁺, ale také Hg²⁺, Cd²⁺, Mn²⁺, Cu²⁺ apod.), vzácněji i Cu⁺nebo Fe³⁺ ve stejné koordinaci jako *B*; v pozici *X* se v trigonálně pyramidální koordinaci uplatňují Sb³⁺, As³⁺, Bi³⁺ a Te⁴⁺; v aniontových pozicích pak vystupují S²⁻, Se²⁻ (v tetraedrické koordinaci v pozici *Y*) a S², Se²⁻ a □ v pozici *Z* ve specifické oktaedrické koordinaci (Moëlo et al. 2008; Biagioni et al. 2020). Recentně publikovaná nová klasifikace této skupiny (Biagioni et al. 2020) přináší využití zastoupe-

	1	2	3	4	5	6	7	8	9		
Ag	0.52	0.64	0.52	0.38	0.36	0.30	0.27	0.27	0.23		
Fe	3.06	3.23	3.37	1.50	2.34	2.36	2.46	1.73	2.86		
Zn	4.19	4.05	3.99	6.19	5.17	5.32	5.31	6.13	4.91		
Cu	38.08	38.64	38.97	39.31	39.17	39.97	39.78	40.00	40.38		
Sb	27.24	24.31	22.85	21.92	21.60	19.31	18.60	18.10	16.05		
As	1.80	3.80	4.61	5.52	5.64	7.24	7.06	8.90	9.55		
S	25.57	26.09	26.20	26.34	26.34	26.56	26.68	26.78	27.07		
total	100.46	100.76	100.51	101.16	100.62	101.06	100.16	101.91	101.05		
Ag	0.079	0.096	0.077	0.056	0.053	0.044	0.040	0.039	0.033		
Cu	9.828	9.808	9.849	9.863	9.849	9.919	9.905	9.818	9.868		
Σ	9.907	9.904	9.926	9.919	9.903	9.963	9.944	9.857	9.901		
Fe	0.899	0.933	0.969	0.428	0.670	0.666	0.697	0.483	0.795		
Zn	1.051	0.999	0.980	1.510	1.264	1.283	1.285	1.463	1.166		
Σ	1.950	1.932	1.949	1.938	1.933	1.950	1.982	1.946	1.962		
Sb	3.670	3.221	3.014	2.871	2.835	2.501	2.417	2.319	2.047		
As	0.394	0.818	0.988	1.175	1.203	1.524	1.491	1.853	1.979		
Σ	4.064	4.039	4.002	4.045	4.038	4.025	3.908	4.171	4.027		
S	13.079	13.125	13.122	13.098	13.126	13.063	13.165	13.026	13.111		
Koeficienty empirického vzorce počítány na bázi 29 <i>apfu.</i>											

Tabulka 2 Chemické složení tennantitu-(Zn) a tennantitu-(Fe) z Kramolína (hm. %)

		tennantit-(Fe)					
	1	2	3	4	5	1	2
Ag	0.22	0.15	0.04	0.01	0.07	0.21	0.19
Fe	1.73	1.87	2.86	2.30	2.70	3.64	3.77
Zn	6.06	6.41	5.23	6.02	5.62	4.00	4.02
Cu	39.81	42.20	42.51	43.01	43.25	41.30	41.51
Sb	15.56	6.54	2.74	0.68	0.37	10.12	8.96
As	9.61	15.72	18.52	19.86	19.99	13.47	13.89
S	26.87	28.52	28.70	28.91	29.09	27.66	27.99
total	99.86	101.41	100.60	100.79	101.09	100.40	100.33
Ag	0.032	0.021	0.005	0.001	0.009	0.030	0.027
Cu	9.840	9.876	9.871	9.901	9.905	9.900	9.887
Σ	9.872	9.897	9.877	9.902	9.915	9.930	9.914
Fe	0.487	0.498	0.756	0.602	0.704	0.993	1.022
Zn	1.456	1.458	1.181	1.347	1.251	0.932	0.931
Σ	1.943	1.956	1.936	1.950	1.955	1.925	1.953
Sb	2.007	0.799	0.332	0.082	0.044	1.266	1.114
As	2.015	3.120	3.648	3.878	3.883	2.739	2.806
Σ	4.022	3.919	3.980	3.959	3.927	4.005	3.920
S	13.163	13.228	13.208	13.189	13.203	13.141	13.213
Koeficienty e	empirického vzorce	počítány na bá	zi 29 apfu.				

ní dvojmocných prvků v *C* pozici pro nomenklaturu jednotlivých minerálních druhů (Biagioni et al. 2020).

Studované vzorky minerálů ze skupiny tetraedritu z Kramolína jsou v BSE obraze velmi výrazně oscilačně zonální (obr. 6); zonalita je vyvolána zejména vysokým rozsahem AsSb_ izomorfie v trigonálně pyramidální pozici X obecného vzorce - 0.04 -3.67 apfu Sb a 0.39 - 3.88 apfu As (obr. 7). Analyzované krystaly jsou podle platné nomenklatury minerálů skupiny tetraedritu (Biagioni et al. 2020) tvořeny třemi minerálními druhy (obr. 7, 8) - tetraedritem-(Zn) (tab. 1), tennantitem-(Zn) a ojediněle i tennantitem-(Fe) (tab. 2). Zjištěné obsahy Ag v trigonální pozici A jsou jen minoritní, u tennantitů nepřevyšují 0.03 apfu, u tetraedritu-(Zn) pak 0.10 apfu (obr. 9). Pro tetraedrit-(Zn) mezi dvojmocnými kationty (C) převažuje Zn (0.98-1.51 apfu) nad Fe (0.43 - 0.97 apfu), v trigonálně pyramidální pozici X pak Sb (2.05 - 3.67 apfu) nad As (0.39 - 1.88 apfu). U tennantitu-(Zn) je v C pozici dominantní Zn s obsahy 1.18 - 1.46 apfu doprovázený Fe (0.49 - 0.76 apfu) a As (2.01 - 3.88 apfu) převažuje nad Sb (0.04 - 2.01 apfu). Ve studovaném krystalu byly ojediněle zjištěny i zóny tvořené tennantitem-(Fe), ve kterých Fe (0.99 - 1.02 apfu) velmi lehce převažuje nad obsahy Zn (0.93 apfu); dominantní obsahy As (2.74 - 2.81 apfu) jsou doprovázeny Sb (1.11 - 1.27 apfu).

Závěr

V materiálu z odvalu Grubenwall 42 v Kramolíně byl zjištěn výskyt výrazně oscilačně zonálních krystalů představovaných tetraedritem-(Zn), tennantitem-(Zn) a ojediněle i tennantitem-(Fe). Takto široký rozsah AsSb, izomorfie je v rámci jednoho krystalu neobvyklý a indikuje vysokou proměnlivost As/Sb poměru v mateřských hydrotermálních fluidech. Podobně velký rozsah AsSb. izomorfie zjištěný na jiných lokalitách (např. Bankov u Košic: Seikora, Števko nepublikovaná data) je spíše odrazem přítomnosti různých generací minerálů tetraedritové skupiny v analyzovaných vzorcích. V porovnání s dosud známými výskyty minerálů skupiny tetraedritu z rudního revíru Michalovy Hory jsou studované vzorky zřetelně chudší Ag a proti tetraedritu-(Fe) z odvalu Jan Křtitel vykazují vyšší zastoupení Zn.

Obr. 7 Chemické složení - obsahy As vs Sb (apfu) pro minerály skupiny tetraedritu z rudního revíru Michalovy Hory.

Obr. 8 Chemické složení - obsahy Zn vs Fe (apfu) pro minerály skupiny tetraedritu z rudního revíru Michalovy Hory.

Obr. 9 Chemické složení - obsahy Ag vs As (apfu) pro minerály skupiny tetraedritu z rudního revíru Michalovy Hory.

Poděkování

Poděkování autorů patří Ing. Jiřímu Smyslovi, za poskytnutí vzorku se studovanými minerály. Předložená práce vznikla za finanční podpory Ministerstva kultury v rámci institucionálního financování dlouhodobého koncepčního rozvoje výzkumné organizace Národní muzeum (DKRVO 2019-2023/1.II.c, 00023272).

Literatura

- ANDRLE A (1997) Michalovy Hory. Speleo 24: 57-58
- BIAGIONI C, GEORGE LL, COOK NJ, MAKOVICKY E, MOËLO Y, PASERO M, SEJKORA J, STANLEY CHJ, WELCH MD, BOSI F (2020) The tetrahedrite group: Nomenclature and classification. Am Mineral 105: 109-122
- FIALA V, MRÁZEK P (1977) Das Mineralvorkommen von Michalové Hory bei Mariánské Lázně. Folia Mus Rer natur Bohem occident, Geol 10: 3-17
- GRAMBLIČKA R (2015) Objev bohatého Pb-Zn-Cu zrudnění v Chodové Plané. Minerál 23(1): 60-64
- MOĖLO Y, MAKOVICKY E, MOZGOVA NN, JAMBOR JL, COOK N, PRING A, PAAR W, NICKEL EH, GRAESER S, KARUP-MØLLER S, BALIĆ-ŽUNIĆ T, MUMME WG, VURRO F, TOPA D, BINDI L, BENTE K, SHIMIZU M (2008) Sulfosalt systematics: A review report of the Sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur J Mineral 20(1): 7-46

- PAULIŠ P (1990) Tennantit z Měděnce a Michalových Hor. Věst Ústř Úst geol 65(5): 353-357
- PAULIŠ P (1993) Köttigit z Michalových Hor (v. od Chodové Plané). J Czech Geol Soc 38(3-4): 218
- PAULIŠ P, JEBAVÁ I, VLK J (2012) Linarit z Dolního Kramolína (rudní revír Michalovy Hory, Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 20(1): 83-86
- POUCHOU JL, PICHOIR F (1985) "PAP" (φρΖ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco: 104-106
- SEJKORA J, KOPECKÝ S, PAULIŠ P, KOPECKÝ S JUN (2015) Ni-Sb mineralizace z rudního revíru Michalovy Hory (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 23(2): 129-146
- VRTIŠKA L, PAULIŠ P, GRAMBLIČKA R, SEJKORA J, MALÍKOVÁ R, POUR O (2017) Supergenní mineralizace rudního revíru Michalovy Hory (Česká republika). Bull Mineral Petrolog 25(2): 228-244