https://doi.org/10.46861/bmp.29.230

PŮVODNÍ PRÁCE/ORIGINAL PAPER

Mineralogická charakteristika granátického skarnu z lokality Trohanka pri Prakovciach (gemerikum, Slovenská republika)

Mineralogical characteristics of a garnet skarn from the Trohanka locality near Prakovce (Gemeric Unit, Slovak Republic)

PAVOL MYŠĽAN^{1)*}, PETER RUŽIČKA²⁾, MARTIN ŠTEVKO^{1,3)} A TOMÁŠ MIKUŠ⁴⁾

¹⁾Ústav vied o Zemi Slovenskej akadémie vied, Dúbravská cesta 9, 840 05 Bratislava, Slovenská republika; *e-mail: myslan.pavol@gmail.com

²⁾Katedra mineralógie, petrológie a ložiskovej geológie, Prírodovedecká fakulta, Univerzita Komenského v Bratislave, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovenská republika

³⁾Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9 - Horní Počernice,

Česká republika

⁴⁾Ústav vied o Zemi, Slovenská akadémia vied, Ďumbierska 1, 974 11 Banská Bystrica, Slovenská republika

MyšĽAN P, RUŽIČKA P, ŠTEVKO M, MIKUŠ T (2021) Mineralogická charakteristika granátického skarnu z lokality Trohanka pri Prakovciach (gemerikum, Slovenská republika). Bull Mineral Petrolog 29(2): 230-240 ISSN 2570-7337

Abstract

Garnet skarn mineralization was recently studied at the Trohanka locality near Prakovce (Gemeric Unit, Eastern Slovakia). Ca-skarn forms lenticular bodies in green schist environment. It mainly consists of zonal garnets, pyroxenes, amphiboles and magnetite accumulations. Studied garnets are rich in andradite component (up to 89.95 mol. %) with minor grossular component (6.83 - 39.67 mol. %). Strong oscillatory zoning in andradite is caused by substitution of Fe³⁺ and Al³⁺. Most pyroxenes are rich in the hedenbergite component. In some cases, euhedral diopside crystals with marginal transition zones (composed of diopside with lower content of Mg²⁺ and higher content of Fe²⁺) were found in hedenbergite matrix. Amphiboles are dominantly represented by ferro-actinolite and ferro-hornblende in association with isolated euhedral crystals of ferro-tschermakite and ferro-pargasite. Indistinct chemical zonality of amphibole euhedral crystals is caused by presence of ferro-pargasite in the central parts and ferro-tschermakite in the peripheral parts of crystals.

Key words: garnet, pyroxene, amphibole, magnetite, skarn, Trohanka, Prakovce, Gemeric Unit

Obdrženo 6. 10. 2021; přijato 6. 12. 2021

Úvod

Skarnová mineralizácia na lokalite Trohanka pri obci Prakovce bola v minulosti študovaná najmä vďaka prítomnosti magnetitového zrudnenia (Maderspach 1880; Papp 1919; Slávik et al. 1967; Lamoš 1969, 1972; Faryad, Peterec 1987; Grecula et al. 1995, 2011; Lexa et al. 2007). Nadväzujúce mineralogicko-petrologické štúdie charakterizovali mineralizačné procesy, ktoré sa podieľali na genéze tohto, pre gemerikum špecifického Ca-skarnu. V rámci jednotlivých vývojových štádií skarnového telesa a jeho asociujúcich hornín boli vyčlenené viaceré minerálne asociácie (Faryad, Peterec 1987; Ružička et al. 2017, 2018).

Predkladaný príspevok je zameraný na detailnú mineralogickú charakteristiku granátického Ca-skarnu na lokalite Trohanka pri Prakovciach, ktorý je dominantne tvorený granátom v asociácii s minerálmi zo skupiny pyroxénu, amfibolu a lokálne aj väčším množstvom magnetitu. Článok nadväzuje na predchádzajúci mineralogicko-petrologický výskum zameraný na charakteristiku chemickej zonálnosti amfibolov v mramoroch (Ružička et al. 2017) a štúdium stilpnomelánu (Ružička et al. 2018) na tejto lokalite.

Lokalizácia a geologická charakteristika

Podľa geomorfologického členenia Slovenskej republiky (Mazúr, Lukniš 1980) skúmané územie patrí do Volovských vrchov a podcelku Kojšovská hoľa. Lokalita je situovaná južne od obce Prakovce, na severnom svahu hrebeňa Trohanka v závere doliny Zimnej vody (obr. 1). GPS súradnice lokality sú 48°46'14.6"N 20°55'36.9"E. Lokalita sa nachádza v nadmorskej výške 832 m. Vzorky boli odoberané z haldového materiálu starých banských prieskumných prác (obr. 2a).

V zmysle litostratigrafického členenia podľa Bajaníka et al. (1983, 1984), ktoré vychádza z litofaciálnej analýzy Snopka (1967), skúmaná lokalita patrí do súvrstvia Bystrého potoka gelnickej skupiny staršieho paleozoika južného gemerika Západných Karpát.

V článku sa prikláňame ku koncepcii Bajaníka et al. (1983, 1984) na rozdiel od prác Greculu (1982) a následne Greculu et al. (2009, 2011), pretože zmenu superpozície jednotlivých paleozoických súvrství gelnickej a rakoveckej skupiny ich začlenením do jednej litostratigrafickej jednotky - volovskej skupiny, respektíve superskupiny, s jednotným faciálnym vývojom v celom gemeriku, nepovažujeme za vhodnú. Litostratigrafiu gelnickej skupiny reprezentujú metavulkanické a metasedimentárne horniny s pôvodnými znakmi flyšovej megasekvencie, ktorá sa rytmicky strieda v troch súvrstviach smerom od podložia k nadložiu: vlachovské súvrstvie, súvrstvie Bystrého potoka a drnavské súvrstvie (Bajaník et al. 1983, 1984).

Stratigrafický rozsah gelnickej skupiny vrchné kambrium - spodný devón bol stanovený biostratigrafickými metódami (Snopková, Snopko 1979; Ivanička et al. 1989; Vozárová et al. 1998, 1999; Soták et al. 1999, 2000) a geochronologickými metódami (Putiš et al. 2008; Vozárová et al. 2010, 2016). Na základe U-Pb SHRIMP datovania magmatických zirkónov z acídnych až intermediárnych metavulkanitov bola stanovená maximálna aktivita kontinentálneho vulkanizmu v gelnickej skupine, ktorá prebiehala počas furongu (~ 492 Ma), tremadoku (~ 481 Ma) a dariwilu (~ 464 Ma; Vozárová et al. 2016). Z lokality Helcmanovce bola datovaná vzorka metavulkanitu metódou SHRIMP, ktorá poskytla vek 482 ± 6 Ma (Putiš et al. 2008). V rámci súvrstvia Bystrý potok darriwilská vulkanická aktivita bola predĺžená do neskorého ordoviku s najvyššou aktivitou v období 453 Ma. Priemerné U-Pb veky zirkónov potvrdili, že najstarším súvrstvím gelnickej skupiny je vlachovské súvrstvie (494 ± 1.6 Ma), za ktorým nasleduje súvrstvie Bystrého potoka (465.8 ± 1.5 Ma) a najmladším je drnavské súvrstvie (463.9 ± 1.7 Ma; Vozárová et al. 2010). Metasedimentárne a metavulkanické horniny gelnickej skupiny boli regionálne metamorfované v podmienkach zodpovedajúcim chloritovej zóne fácie zelených bridlíc v intervale teplôt 350 - 470 °C a tlakov 3.5 - 6 kbar (Faryad 1991a, b, 1995)

Skarnová mineralizácia

Skarnová mineralizácia sa viaže na šošovky zelených bridlíc, ktoré podrobne zmapoval Lamoš (1969) vo východnej časti súvrstvia Bystrého potoka na severných svahoch Trohanky a severne od Zlatej ldky. Zelené bridlice sú lokalizované v sľudnatých a sľudnato-grafitických fylitoch (obr. 1). Na lokalite Trohanka kontaktnú metamorfózu pravdepodobne iniciovali S-typové permské granity gemerika - Humelský granit (Faryad, Peterec 1987). CHIME datovanie magmatického monazitu z humelského granitu preukázalo vek v rozsahu 275 - 260 Ma (Radvanec et al. 2009).

- **Obr. 1** Detail geologickej mapy študovaného územia (Bajaník et al. 1984 - modifikované) s vyznačením miesta odberu vzoriek.
- **Obr. 2** a) Pohľad na miesto odberu vzoriek. Foto P. Myšľan, 2020; b-c) Prierezy študovaných vzoriek skarnov. Foto P. Ružička.

0 ₩ 1 2 3 4 5 6 7 8 9 1 0 ₩ 1 2 3 4 5 6 7 8

Výskyt skarnu s magnetitovou mineralizáciou uvádzajú viacerí autori (Maderspach 1880; Papp 1919; Slávik et al. 1967; Lamoš 1969, 1972; Faryad, Peterec 1987; Grecula et al. 1995, 2011; Lexa et al. 2007). Vznik Fe -skarnov interpretujú Faryad, Peterec (1987) ako produkt infiltrácie hydrotermálnych fluíd v iniciálnom štádiu penetrácie granitoidov do okolitých metamorfných produktov bázického vulkanizmu gelnickej skupiny gemerika. Prenikajúce fluidá v póroch alebo pozdĺž puklín sa podieľali na formovaní minerálnych termálnych zón počas pôsobenia kontaktnej metamorfózy. Vo vonkajšej zóne skarnového telesa pôsobili metasomatické alterácie podporené tektonickou aktivitou.

V závislosti od intenzity pôsobenia termálnych účinkov Faryad, Peterec (1987) vyčlenili tri exokontaktné zóny:

- Pyroxénová zóna je dominantne zastúpená hedenbergitom s nižším podielom diopsidu (Hd_{64.5}Di_{33.8}) s plagioklasovo-tremolitovou subzónou na kontakte s aplitmi;
- Granátová zóna obsahuje viac andraditovej zložky (Adr_{75.84.2}) a menej grosulárovej zložky (Grs_{8.3-19.9});
- Vonkajšia metasomatická zóna (plagioklasovo-epidotová a aktinolitovo-epidotová).

Skarnová mineralizácia prebiehala v dvoch štádiách. Prvé štádium v pyroxénovej a granátovej zóne je charakteristické vznikom klinopyroxénov, granátov, titanitu a v menšej miere magnetitu. Klinopyroxény vznikli skôr ako granáty. Do prvého štádia je zahrnutý aj vznik tremolitu a epidotu v asociácii s plagioklasmi a kremeňom vo vnútornej zóne na kontakte s karbonátmi a aplitmi. Druhé štádium je charakteristické alteráciami klinopyroxénov, granátov a hornblendu, ktorý sa mení na aktinolit. Najmladšie alterácie v rámci druhého štádia sú reprezentované vznikom kalcitu, plagioklasov, amfibolov, kremeňa a chloritových žiliek. Časť rudných minerálov vznikla v dôsledku zmeny Fe-silikátov počas druhého štádia (Faryad, Peterec 1987).

V kontaktných horninách boli identifikované tri kombinácie minerálnych asociácií (Faryad, Peterec 1987):

- a) klinopyroxény + tremolit + Fe-oxidy ± kremeň;
- b) klinopyroxény + granáty + hornblend + kalcit + kremeň + biotit;
- c) klinopyroxény + aktinolit + kalcit ± talk(?) + titanit + biotit.

Tlakovo-teplotné podmienky skarnov modelovali Faryad, Peterec (1987). Tlak bol konštantne zvolený na 200 MPa. Na základe identifikovanej minerálnej asociácie sa predpokladá vznik prvého štádia pri teplote 570 °C. Druhé štádium, ktoré je charakterizované alteráciou minerálov prvého štádia, s akumuláciou rudných minerálov prebiehalo pri predpokladanej teplote 420 °C.

Stilpnomelán v asociácii s amfibolmi a epidotom vznikol pravdepodobne počas alpínskej metamorfózy, čoho dôkazom sú textúrne vzťahy, ktoré naznačujú, že stilpnomelán pretína staršie skarnové minerály (Ružička et al. 2018).

Metodika

Terénny výskum bol zameraný na získanie reprezentatívnych vzoriek skarnov z haldového materiálu starých banských prieskumných prác (obr. 2a) . Mikroskopickým pozorovaním v prechádzajúcom aj odrazenom svetle polarizačného mikroskopu Leica DM2500P na Katedre mineralógie, petrológie a ložiskovej geológie Prírodovedeckej fakulty Univerzity Komenského v Bratislave boli sledované štruktúrne vzťahy medzi jednotlivými minerálmi.

Leštené výbrusy, vákuovo naparené tenkou uhlíkovou vrstvou, boli analyzované na elektrónovom mikroanalyzátore JEOL JXA-8530FE na Ústave vied o Zemi Slovenskej akadémie vied v Banskej Bystrici (analytik T. Mikuš). Vzorky boli analyzované pri urýchľovacom napätí 15 kV a prúde 20 nA. Priemer elektrónového lúča sa pohyboval v rozsahu 5 - 10 µm. Na meranie silikátov boli použité nasledovné štandardy: kremeň, ortoklas (SiKa, $KK\alpha$), rutil (Ti $K\alpha$), albit (Al $K\alpha$, Na $K\alpha$), hematit (Fe $K\alpha$), rodonit (MnKa), diopsid (MgKa, CaKa), ScVO₄ (VKa), Cr_2O_3 ($CrK\alpha$), fluorit ($FK\alpha$), NaCl ($ClK\alpha$). Magnetity boli študované pomocou elektrónového mikroanalyzátora Cameca SX100 (analytik Z. Dolníček). Vzorky boli analyzované pri urýchľovacom napätí 15 kV, prúde 20 nA a šírka lúča bola 5 µm. Kvantitatívne analýzy magnetitov boli vyhotovené na nasledujúcich štandardoch a analytických čiarach: wollastonit (Si $K\alpha$, Ca $K\alpha$), TiO₂ (Ti $K\alpha$), Al₂O₂ (AIK α), hematit (FeK α), diopsid (MgK α), Co (CoK α). Vzájomné vzťahy analyzovaných fáz sa pozorovali v spätne rozptýlených elektrónoch (BSE).

Elektrónové mikroanalýzy boli prepočítané v zmysle platných klasifikácií pre granáty (Grew et al. 2013), pyroxény (Morimoto et al. 1988) a amfiboly (Hawthorne et al. 2012). Klasifikačný diagram amfibolov podľa Leake et al. (1997) bol použitý z dôvodu grafického vyjadrenia rozdielov v klasifikačných parametroch, ktoré sú postavené na porovnávaní obsahov Si vs. Mg/(Mg + Fe²⁺) v *apfu*, na rozdiel od klasifikačného diagramu Hawthorne et al. (2012), ktorý vychádza z porovnávania ^c(Al + Fe³⁺ + 2Ti) vs. ^A(Na + K + 2Ca) v *apfu*. Obsahy železa boli pri granátoch a klinopyroxénoch rozpočítané na Fe²⁺ a Fe³⁺ z nábojovej bilancie a pre amfiboly podľa postupu uvedeného v práci Leake et al. (1997).

Výsledky

Petrografický opis vzoriek

Skarny sú makroskopicky prevažne masívne zelené až zelenočierne horniny s výrazným zastúpením hnedo sfarbených granátov, ktoré tvoria izolované kryštály a agregáty zoskupené do izolovaných zón. Kryštály granátov dosahujú maximálnu veľkosť do 1.5 cm a priemerná veľkosť izolovaných zŕn je 0.5 cm. Zelené sfarbenie hornine dodávajú prítomné klinopyroxény a prevažne čierne polohy sú tvorené stĺpcovými agregátmi kryštálov amfibolov (obr. 2b, c).

Minerálna asociácia je v skúmaných skarnoch tvorená dominantne klinopyroxénmi, ktoré sú v asociácii s granátmi. Geneticky mladšie amfiboly v asociácii s granátmi vznikajú po rozpade klinopyroxénov. V študovaných vzorkách je zastúpený aj magnetit, ktorý vytvára monominerálne akumulácie.

Chemické zloženie minerálnej asociácie

Klinopyroxény

V skúmaných vzorkách skarnov boli analyzované zonálne klinopyroxény diopsidovo-hedenbergitového zloženia. Klinopyroxény tvoria súčasť základnej hmoty skarnov. V BSE zobrazení sa prejavuje ich výrazná difúzna chemická zonálnosť variabilnými prechodmi medzi tmavou a svetlou zónou.

Hedenbergit sa v BSE zobrazení prejavuje dominantne svetlosivou farbou zonálnosti. Z chemického hľadiska majú hedenbergity nižšie obsahy Mg (0.20 - 0.40 *apfu*) a vyššie obsahy Fe²⁺ (0.55 - 0.74 *apfu*). Výraznejšie je zastúpená kanoitová (Kn_{0.19-0.41}) zložka (tab. 1). V hedenbergite sa lokálne vyskytujú izolované, idiomorfné, v BSE zobrazení tmavé kryštály pyroxénov, ktoré sú dominantne tvorené diopsidom. V diopsidoch sa obsah Mg pohybuje v intervale 0.62 - 0.72 *apfu* a Fe²⁺ v intervale 0.23 - 0.32 *apfu*. Pomer Mg/(Mg+Fe) vyjadrený ako X_{Mg} sa pohybuje v rozsahu 0.66 - 0.76. Mierne zvýšený je obsah kanoitovej (Kn_{0.25-0.46}) zložky. V okrajových častiach idiomorfných klinopyroxénov klesá obsah diopsidovej zložky, čo sa v BSE zobrazení prejavuje zosvetlením ich periférnych častí (tab. 1, obr. 3e, f, 5).

Amfiboly

V skarnoch boli identifikované štyri amfiboly: fero-aktinolit, fero-hornblend, fero-tschermakit a fero-pargasit, v ktorých je lokálne vyvinutá kompozičná zonálnosť (tab. 2, obr. 3a-d).

Fero-aktinolit dominantne vystupuje vo forme hypidiomorfných kryštálov a tvorí základnú hmotu, v ktorej sa vyskytujú idiomorfné kryštály fero-tschermakitu a fero-pargasitu (obr. 3b). Fero-aktinolit dosahuje najvyššiu hodnotu X_{Ma} v intervale 0.15 - 0.24, ako aj najvyššie obsahy Si (7.74 - 7.92 *apfu*). V pozícii *W* má nízky obsah Cl (do 0.01 *apfu*). Prítomný je mierne zvýšený obsah K (do 0.03 *apfu*) v pozícii *A* (tab. 2). Lokálne je vyvinutý kontinuálny prechod fero-hornblendu do fero-aktinolitu (obr. 3d).

Fero-hornblend tvorí hypidiomorfné až idiomorfné kryštály veľkosti maximálne 1 mm (obr. 3a) ktoré prechádzajú do fero-aktinolitu. Na základe nevýraznej variability chemického zloženia boli identifikované dva typy fero-hornblendu. Táto zonálnosť je spôsobená rozdielnymi obsahmi Fe²⁺ a Mg v svetlej a tmavej zóne. Prvá skupina je charakteristická zvýšenou hodnotou X_{Mg} (0.17 - 0.20) a vysokým obsahom Si (7.41 apfu), pričom obsahy CI (do 0.02 apfu), Na (0.09 - 0.11 apfu) a K (do 0.06 apfu) sú nízke (tab. 2). V BSE zobrazení sú fero-hornblendy z prvej skupiny tmavé a chemické zloženie majú blízke s fero -aktinolitom. Druhú skupinu tvoria svetlé fero-hornblendy so zníženou hodnotou X_{Ma} (0.02 - 0.08), ako aj nižším Si (6.53 - 6.67 apfu) a s výrazným obohatením o Cl (0.11 -0.40 apfu) v pozícii W a K (0.26 - 0.32 apfu) v pozícii A. Zvýšený je aj obsah Na (0.20 - 0.22 apfu) (tab. 2).

Tabuľka 1 Reprezentatívne mikrosondové analýzy klinopyroxénov (hm. %) zo skarnov prepočítané na 4 katióny (apfu) s vyjadrením zastúpenia koncových členov (mol. %)

			,							
Analýza	1	2	3	4	5	6	7	8	9	10
Farba zóny v BSE		sve	tlá		precho	odná				
Fáza		Heden	bergit		Diop	sid		sid		
SiO ₂	50.24	48.59	49.33	50.07	51.56	51.22	52.06	51.39	52.29	51.63
TiO ₂	0.05	0	0	0	0	0.05	0	0	0	0
Al ₂ O ₃	0.15	0.15	0.02	0.03	0.04	0	0	0.02	0.02	0
Cr ₂ O ₃	0	0	0	0	0.02	0.04	0	0	0	0.01
V ₂ O ₃	0.01	0	0	0	0	0	0	0	0.01	0
Fe ₂ O ₃	0.71	2.02	2.02	0.97	1.38	1.44	0.87	2.24	2.46	2.53
FeO	17.85	21.89	17.87	16.47	11.02	12.31	9.91	9.92	7.36	7.58
MnO	0.11	0.19	0.24	0.20	0.11	0.15	0.19	0.15	0.24	0.28
MgO	6.39	3.36	5.74	6.84	10.57	9.78	11.39	10.89	12.77	12.20
CaO	23.87	23.19	23.88	24.09	24.69	24.47	24.86	24.84	25.10	25.08
Na ₂ O	0.04	0.07	0.01	0.03	0.01	0.01	0	0.03	0	0
Suma	99.42	99.45	99.11	98.71	99.40	99.47	99.28	99.48	100.26	99.30
Si ⁴⁺	1.986	1.968	1.970	1.986	1.979	1.977	1.987	1.968	1.965	1.964
Al ³⁺	0.007	0.007	0.001	0	0.002	0	0	0.001	0.001	0
Fe ³⁺	0.007	0.025	0.029	0.014	0.019	0.023	0.013	0.031	0.034	0.036
Suma T	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Ti ⁴⁺	0.001	0	0	0	0	0.001	0	0	0	0
Fe ³⁺	0.014	0.036	0.032	0.015	0.021	0.019	0.012	0.034	0.036	0.036
Cr ³⁺	0	0	0	0	0.001	0.001	0	0	0	0
V ³⁺	0	0	0	0	0	0	0	0	0	0
Mg ²⁺	0.377	0.203	0.342	0.404	0.605	0.563	0.648	0.622	0.715	0.692
Fe ²⁺	0.590	0.741	0.596	0.547	0.354	0.397	0.317	0.318	0.231	0.240
Mn ²⁺	0.004	0.007	0.008	0.007	0.004	0.005	0.006	0.005	0.008	0.009
Suma M1	0.987	0.987	0.978	0.973	0.984	0.987	0.983	0.979	0.990	0.978
Ca ²⁺	1.010	1.008	1.022	1.024	1.015	1.012	1.017	1.019	1.010	1.022
Na⁺	0.003	0.005	0.001	0.002	0.001	0.001	0	0.002	0	0
Suma M2	1.013	1.013	1.022	1.027	1.016	1.013	1.017	1.021	1.010	1.022
Wollastonit	50.67	50.92	51.83	51.56	51.22	51.17	51.16	51.80	51.38	52.04
Enstatit	18.98	10.34	17.35	20.39	30.57	28.45	32.62	31.63	36.41	35.23
Ferosilit	29.74	37.77	30.31	27.55	17.88	20.09	15.91	16.17	11.78	12.27
Kanoit	0.19	0.33	0.41	0.34	0.18	0.25	0.31	0.25	0.39	0.46
Egirín	0.15	0.28	0.04	0.12	0.04	0.04	0	0.11	0	0
Ca-tschermakit	0.20	0.36	0.05	0.05	0.10	0	0	0.05	0.05	0
Ti-tschermakit	0.07	0	0	0	0	0	0	0	0	0
X _{Mg}	0.39	0.22	0.36	0.43	0.63	0.59	0.67	0.66	0.76	0.74

Fero-tschermakit vystupuje spoločne s fero-pargasitom vo forme idiomorfne ohraničených a izolovaných kryštálov veľkosti maximálne 1.5 mm v základnej hmote tvorenej fero-aktinolitom (obr. 3b). Smerom od jadra k okrajom kryštálov je prítomná chemicky nevýrazná zonálnosť, ktorá sa prejavuje nízkym kontrastom v BSE zobrazení a vytvára dve nevýrazné BSE zóny. Hodnota X_{Mg} je v strede a na okrajoch kryštálov rovnaká (0.03). Stred kryštálov fero-tschermakitu nie je vždy zachovaný a je nahradený fero-aktinolitom. Svetlá zóna v BSE je tvorená fero-pargasitom a je zastúpená v stredových častiach idiomorfných kryštálov, ktoré sú v porovnaní s okrajmi obohatené o Fe²⁺ (do 3.86 *apfu*), Fe³⁺ (do 0.72 *apfu*), K (do 0.34 *apfu*) a CI (do 0.38 *apfu*). V tmavej zóne, ktorá je tvorená fero-tschermakitom a je zastúpená dominantne v okrajových častiach izolovaných amfibolových kryštálov, dochádza k ochudobneniu o Fe²⁺ (do 3.73 *apfu*), Fe³⁺ (do 0.66 *apfu*), a výraznejšiemu ochudobneniu o K (do 0.28 *apfu*) a CI (do 0.21 *apfu*; tab. 2).

Granáty

Izolované idiomorfné kryštály granátov sa vo vzorkách skarnov vyskytujú v asociácii s klinopyroxénmi aj amfibolmi (obr. 3a, b). Granáty sú z hľadiska chemického

Obr. 3 BSE zobrazenie zonálnosti analyzovaných fáz v skarnoch. Foto T. Mikuš. Význam použitých skratiek: Adr - andradit, Di - diopsid, Hd - hedenbergit, Mag - magnetit, Fe-Act - fero-aktinolit, Fe-Hbl - fero-hornblend, Fe-Ts - ferotschermakit, Fe-Prg - fero-pargasit.

V BSE zobrazení sa chemická vařiabilita v zložení granátov prejavuje farebne kontrastnou oscilačnou zonálnosťou (obr. 4a). Analyzovali sme kompozičné zmeny v rámci líniového profilu v zonálnom granáte (obr. 4b, c, tab. 3, analýzy 1 - 6). Tmavá zóna je charakteristická znižovaním obsahu andraditovej zložky (Adr_{58.75-78.66}) na úkor zvyšovania obsahu grosulárovej zložky (Grs_{19.96-39.67}) v granátoch. Svetlá zóna sa prejavuje vyšším obsahom andraditovej zložky (Adr_{75.55-89.95}) na úkor znižovania obsahu grosulárovej vyším obsahom andraditovej gložky (Grs_{6.68-23.61}) zložky. V týchto zónach je prítomná substitúcia Fe³⁺ \leftrightarrow Al³⁺, pričom ostatné sub-

stitúcie medzi Fe²⁺ \leftrightarrow Mg²⁺ \leftrightarrow Mn²⁺ sa prejavujú iba v zanedbateľnom množstve. V minimálnom množstve je zastúpený Mn a Mg (do 0.01 *apfu*). Na hranici detekčných limitov je Ti, Cr a V (tab. 3).

Magnetity

Magnetitové zrudnenie v skarnovom telese je prevažne viazané v amfibolových polohách. Akumulácie magnetitu dosahujú hrúbku niekoľkých centimetrov, magnetity sú prítomné vo forme izolovaných kryštálov, žíl alebo vypĺňajú priestory medzi andraditom, hedenbergitom a amfibolmi.

V BSE zobrazení bola v magnetitoch pozorovaná zonálnosť, ktorá je spôsobená zmenami v obsahoch Si a Fe³⁺. Z mikrosondových analýz vyplýva, že v tmavej

Tabuľka 2 Reprezentatívne elektrónové mikroanalýzy amfibolov (hm. %) zo skarnov prepočítané na 13 katiónov eCNK (apfu). Symbol* vyjadruje dopočítanie H₂O pre OH

	1	2	2	1	5	6	7	0	0	10	11	10	12
	1	- tmavá	5	4		tm		tmavá					
	F (unava	. 19	500		une	ava		unava	1. 11	Svelia		
Faza	Fe	ero-aktin	Olit		Fero-no	rnbiend		Fero-tschermakit			Fero-pargasit		
SiO ₂	50.09	49.21	51.68	40.01	39.98	46.96	47.76	39.04	39.22	39.04	38.29	38.65	38.97
	0	0	0.04	0.04	0.03	0.10	0	0.14	0.05	0.14	0.04	0.10	0.02
Al ₂ O ₃	1.73	2.55	0.41	9.28	9.00	3.88	3.47	10.75	10.57	10.75	10.56	10.44	10.54
Fe ₂ O ₃	2.58	2.84	1.09	6.03	6.17	3.//	5.09	5.38	5.39	5.38	4.65	5.87	4.83
FeO	27.10	27.35	27.39	27.73	26.51	27.53	26.49	27.25	27.75	27.25	27.80	27.66	27.75
Mao	0.30	0.24	0.22	0.28	0.20	0.38	0.41	0.21	0.23	0.21	0.18	0.17	0.23
MgO	4.70	4.42	00.0	0.48	1.30	3.11	3.73	0.47		0.47	0.50	0.40	0.54
	11.49	11.07	11.98	11.27	0.70	11.32	0.20	11.37	0.70	0.05	0.70	0.70	0.70
	0.19	0.27	0.04	0.62	0.70	0.36	0.30	0.65	0.70	0.65	0.70	0.70	0.73
K ₂ O	0.17	0.13	0.04	1.29	1.20	0.29	0.30	1.35	1.19	1.35	1.01	1.41	1.29
F	0 04	0 02	0 04		0 20	0.05		0 70	0 72	0 70	0.08	1 10	0.01
	1.02	1.03	0.04	0.51	0.39	1.05	1.00	0.70	1.62	0.70	1.30	1.10	0.71
	1.92	1.92	1.94	1.00	1.71	1.07	1.09	1.02	1.03	1.02	1.41	1.55	1.02
-0=F	0.01	0.01	0.01	0 1 2	0 00	0.01	0 01	0 10	0 16	0 1 0	0.03	0.25	0 16
-0-01	100.00	100.01	100.72	0.12	0.09	0.01	100.00	0.10	0.10	0.10	0.31	0.25	0.10
Suma	100.38	100.63	100.73	99.23	98.65	99.62	100.90	99.00	98.88	99.00	98.71	99.57	98.84
Si	7.744	7.614	7.919	6.529	6.527	7.407	7.414	6.382	6.411	6.382	6.348	6.334	6.392
™AI	0.256	0.386	0.074	1.4/1	1.473	0.593	0.586	1.618	1.589	1.618	1.652	1.666	1.608
Suma T	8.000	8.000	7.993	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
Ti	0	0	0.005	0.005	0.004	0.012	0	0.017	0.006	0.017	0.005	0.012	0.002
VIAI	0.059	0.079	0	0.314	0.259	0.128	0.049	0.452	0.447	0.452	0.411	0.350	0.430
Fe ³⁺	0.301	0.331	0.125	0.741	0.758	0.448	0.594	0.661	0.663	0.661	0.580	0.724	0.596
Mg	1.097	1.020	1.339	0.117	0.331	0.731	0.863	0.115	0.127	0.115	0.124	0.098	0.132
Fe ²⁺	3.504	3.539	3.510	3.785	3.620	3.631	3.439	3.725	3.725	3.725	3.855	3.791	3.807
Mn	0.039	0.031	0.021	0.039	0.028	0.051	0.054	0.029	0.032	0.029	0.025	0.024	0.032
Suma C	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Mn	0	0	0.007	0	0	0	0	0	0	0	0	0	0
Са	1.903	1.935	1.967	1.971	1.982	1.913	1.896	1.991	1.998	1.991	2.000	2.000	2.000
Na	0.057	0.065	0.012	0.029	0.018	0.087	0.090	0.009	0.002	0.009	0	0	0
Suma B	1.960	2.000	1.986	2.000	2.000	2.000	1.987	2.000	2.000	2.000	2.000	2.000	2.000
Са	0	0	0	0	0	0	0	0	0	0	0.043	0.025	0.037
Na	0	0.016	0	0.167	0.204	0.023	0	0.197	0.220	0.197	0.225	0.222	0.232
K	0.034	0.026	0.008	0.269	0.262	0.058	0.059	0.282	0.248	0.282	0.341	0.295	0.270
Suma A	0.034	0.041	0.008	0.435	0.466	0.081	0.059	0.479	0.468	0.479	0.608	0.542	0.539
F	0	0	0	0	0	0	0	0	0	0	0.041	0	0.005
CI	0.011	0.008	0.010	0.139	0.106	0.013	0.016	0.213	0.196	0.213	0.380	0.300	0.194
OH	1.989	1.992	1.990	1.861	1.894	1.987	1.984	1.787	1.804	1.787	1.579	1.700	1.801
Suma W	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
X _{Mg}	0.24	0.22	0.15	0.03	0.08	0.17	0.20	0.03	0.03	0.03	0.03	0.03	0.03

zóne je nižší obsah Fe³⁺ (1.56 - 1.66 *apfu*) a vyšší obsah Si (0.17 - 0.22 *apfu*) a vo svetlej zóne je nižší obsah Si (0 - 0.03 *apfu*) a vyšší obsah Fe³⁺ (1.93 - 2.00 *apfu*). Obsahy Fe²⁺ v obidvoch zónach sa pohybujú v rozsahu 0.99 - 1.17 *apfu*. Ostatné prvky sú prítomné v minimálnom množstve (tab. 4).

Diskusia

Identifikované príklady variability chemickej zonálnosti klinopyroxénov, amfibolov a granátov na lokalite Trohanka pri Prakovciach sú odrazom ich genetického vývoja v rámci vývoja termálnych zón skarnovej mineralizácie počas kontaktnej metamorfózy. Vplyv pôsobenia zdrojových hydrotermálnych fluíd na distribúciou prvkov a tvorbu zonálnosti minerálov sa preferuje pri vzniku skarnových ložísk (Meinert et al. 2005; Yu et al. 2020). Zonálnosť reflektuje kompozičné zmeny, ktoré prekonali silikáty počas ich metamorfného vývoja reagujúc na zmeny tlaku, teploty a zloženia fluíd.

Hydrotermálno-metasomatické účinky kontaktnej metamorfózy často vyvolávajú kompozičné variácie, ktoré sa prejavujú rôznymi formami zonálnosti, ktorá je spojená s distribúciou prvkov počas špecifických podmienok vývoja prírastkových zón granátov (Jamtveit et al. 1995; Ivanova et al. 1998; Grew et al. 2013; Zhai et al. 2014; Antao et al. 2015; Park et al. 2017). Priamu závislosť vplyvu chemickej zonálnosti amfibolov na progresívny charakter metamorfózy potvrdili Balen et al. (1997) tým, že pozorovali rozdiely v obsahoch Si a Mg vo vzťahu medzi stredom a okrajmi kryštálov, ktoré priamo ovplyvňovali aj obsahy Al, Na a Ti. Zmeny v chemickom zložení amfibolov nastali v prográdnom režime metamorfózy počas prechodu z fácie zelených bridlíc do amfibolitovej fácie. K podobnému záveru prišli aj Miri et al. (2016), ktorí pri štúdiu zonálnosti v jadre smerom k okraju amfibolov namerali zvýšené obsahy Al, Fe, Na a K, pričom sa znižovali obsahy Si a Mg v súlade so zmenou tlakovo-teplotných podmienok metamorfózy.

Identifikované amfiboly podľa klasifikácie Hawthorne et al. (2012) na základe súčtu trojmocných katiónov v pozícii C v intervale 0.5 - 1.5 *apfu* spadajú do poľa magnezio-hornblendu a pargasitu v závislosti od obsahu Na, Ca a K katiónov v pozícii A (obr. 6b). Súčet Al³⁺ + Fe³⁺ + 2Ti katiónov v pozícií C je v nami skúmaných amfiboloch (tab. 2, analýzy 7 - 13) v intervale 1.00 - 1.13 *apfu*, preto sú amfiboly podľa predmetnej klasifikácie pomenované ako magnezio-hornblend s výrazným obohatením o pargasitový komponent až pargasit. Tento klasifikačný diagram však nevystihuje kryštalochemický charakter nami skúmaných amfibolov. Pozícia T je výrazne ochudobnená o Si a obohatená o Al, v pozícii C sú dva dominantné katióny Fe²⁺ a Fe³⁺ a v pozícii A sa dominantne vyskytuje vakancia, Na je prítomný v malom množstve (do 0.22 *apfu*) (tab. 2, analýzy 8 - 10).

Tabuľka 3 Reprezentatívne mikrosondové analýzy granátov (hm. %) zo skarnov prepočítané na 8 katiónov (apfu) s vyjadrením zastúpenia koncových členov (mol. %)

0 vyjaaronn	n zaolap	orna non	00190110									
Analýza	1	2	3	4	5	6	7	8	9	10	11	12
Farba zóny v BSE	svetlá	tmavá	svetlá	svetlá	tmavá	tmavá		tmavá			svetlá	
SiO ₂	35.17	35.75	35.34	34.94	35.31	35.73	36.47	36.49	35.80	35.65	34.91	35.13
TiO	0.15	0	0	0	0.01	0.02	0.03	0	0.11	0.02	0	0.01
Al ₂ O ₃	2.15	5.06	2.45	0.50	3.67	4.76	8.80	8.58	5.08	4.61	0.96	2.21
Cr ₂ O ₃	0	0	0	0	0	0	0	0	0.01	0	0.02	0.02
V ₂ O ₃	0.05	0.01	0.02	0	0	0	0	0.03	0	0	0	0
Fe ₂ O ₃	27.24	24.09	26.72	29.49	25.66	24.86	19.41	19.64	24.33	24.80	28.70	27.64
FeO	0.53	0.35	0.69	1.29	0.42	0.49	0.51	0.38	0.35	0.26	0.92	0.59
MnO	0.09	0.07	0.15	0.03	0.15	0.10	0.17	0.06	0.08	0.06	0.09	0.13
MgO	0.02	0.01	0.04	0.06	0.02	0	0.01	0	0.04	0.03	0.05	0.02
CaO	34.03	34.24	33.82	33.43	33.90	34.19	34.26	34.48	34.33	34.29	33.55	33.87
Suma	99.43	99.57	99.23	99.75	99.14	100.15	99.66	99.66	100.13	99.71	99.21	99.62
Si ⁴⁺	2.950	2.952	2.965	2.951	2.949	2.941	2.954	2.957	2.941	2.946	2.955	2.944
Al ³⁺	0.050	0.048	0.035	0.049	0.051	0.059	0.046	0.043	0.059	0.054	0.045	0.056
Suma Z	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Al ³⁺	0.163	0.444	0.207	0	0.310	0.403	0.794	0.777	0.433	0.395	0.050	0.162
Ti ⁴⁺	0.009	0	0	0	0.001	0.001	0.002	0	0.007	0.001	0	0.001
Fe ³⁺	1.720	1.497	1.687	1.874	1.613	1.540	1.183	1.197	1.504	1.542	1.828	1.743
Cr ³⁺	0	0	0	0	0	0	0	0	0.001	0	0.001	0.001
V ³⁺	0.003	0.001	0.001	0	0	0	0	0.002	0	0	0	0
Fe ²⁺	0.037	0.024	0.048	0.091	0.029	0.034	0.035	0.026	0.024	0.018	0.065	0.041
Mn ²⁺	0.006	0.005	0.011	0.002	0.011	0.007	0.012	0.004	0.006	0.004	0.006	0.009
Mg ²⁺	0.003	0.001	0.005	0.008	0.002	0	0.001	0	0.005	0.004	0.006	0.002
Suma Y	1.941	1.971	1.960	1.975	1.966	1.985	2.027	2.006	1.979	1.964	1.958	1.959
Ca ²⁺	3.059	3.029	3.040	3.025	3.034	3.015	2.973	2.994	3.021	3.036	3.042	3.041
Suma X	3.059	3.029	3.040	3.025	3.034	3.015	2.973	2.994	3.021	3.036	3.042	3.041
Almandín	1.20	0.78	1.55	2.92	0.95	1.11	1.15	0.85	0.79	0.58	2.09	1.33
Pyrop	0.08	0.04	0.16	0.24	0.08	0	0.04	0	0.16	0.12	0.20	0.08
Spessartín	0.21	0.16	0.34	0.07	0.34	0.23	0.39	0.14	0.18	0.14	0.21	0.30
Grosulár	15.44	25.63	16.42	6.83	19.96	23.09	39.67	39.61	25.06	23.61	9.62	13.77
Andradit	83.08	73.39	81.52	89.95	78.66	75.56	58.75	59.40	73.81	75.55	87.88	84.52

Klasifikácia vápenatých amfibolov podľa Leaka et al. (1997) používa obsahy Si v amfiboloch a použili sme ju na rozlíšenie fero-hornblendu, fero-tschermakitu a fero-pargasitu. Výrazná substitúcia medzi Si⁴⁺ ↔ Al³⁺ v pozícii T zapríčinila pokles celkového Si pod 6.5 apfu a navýšenie ^{IV}Al nad 1.5 apfu (tab. 2). Zvýšený obsah Fe2+ (3.73 - 3.86 apfu) prisudzuje amfibolom predponu fero- (Hawthorne et al. 2012). Amfiboly sú výrazne obohatené o Fe3+ (0.58 - 0.72 apfu) voči VIAI (0.35 - 0.45 apfu). Výrazná substitúcia Al3+ ↔ Fe3+ spôsobila mierne ochudobnenie o Fe3+ vo výslednom kryštalochemickom vzorci v pozícii C, preto predpokladáme, že amfiboly sú iba o Fe³⁺ obohatené. V amfiboloch je zastúpenie ^A(Na+K+2Ca) v intervale 0.47 - 0.61 apfu, pričom amfiboly s ^A(Na+K+2Ca) < 0.5 apfu prisudzujeme k fero-tschermakitu a amfiboly s ^A(Na+K+2Ca) > 0.5 apfu k fero-pargasitu.

Identifikované zonálne amfiboly v skúmaných skarnoch sme graficky porovnali so staršími prácami z identickej lokality (obr. 6). V mramoroch spolu so zelenými bridlicami boli identifikované variabilné prechody v zonálnosti amfibolov medzi tremolitom a aktinolitom, aktinolitom a fero-aktinolitom, magnezio-hornblendom a fero-hornblendom (Ružička et al. 2017). Zonálny kompozičný charakter bol potvrdený aj v amfiboloch, ktoré boli v asociácii so stilpnomelánom (Ružička et al. 2018).

Z klinopyroxénov sú v nami študovanej minerálnej asociácii zastúpené hedenbergit a diopsid. V nich je v pozícii *T* deficit Si a ^{IV}Al³⁺, ktoré sú v pozícií *T* substituované Fe³⁺. Prostredníctvom substitúcie NaFe³⁺(CaMg)₋₁ je prítomná egirínová molekula (do 0.56 mol. %), z ktorej časť Fe³⁺ môže byť zapojená do Ca-tschermakitovej (CaFe³⁺SiAIO₆) alebo Ti-tschermakitovej (CaTi_{0.5}Mg_{0.5}Si Fe³⁺O₆) substitúcie, vplyvom veľmi nízkeho obsahu Al a Na v študovaných klinopyroxénoch. Zvýšený obsah dosahuje Ca (1.01 - 1.02 *apfu*) v pozícii *M*1, čo sa prejavuje zvýšením wollastonitovej komponenty (Wo_{50.59-52.36}). Faryad, Peterec (1987) v pyroxénoch z Trohanky popisujú prítomnosť "hydrodiopsidovej" zložky (do 0.28 % H₂O), ktorá pravdepodobne spôsobuje mierne navýšenie o Wo komponent.

Porovnaním chemického zloženia jednotlivých prírastkových zón v granáte sme identifikovali chemickú variabilitu zloženia cirkulujúcich hydrotermálnych fluíd, ktoré ovplyvňovali mineralizačný charakter grosulárovej a andraditovej zložky v rámci vývoja skarnových zón. Faryad, Peterec (1987) identifikovali zo skarnu na Trohanke granáty dominantne andraditového zloženia (Adr_{75.0-84.2}) so zvýšeným obsahom grosulárovej (Grs_{8.3-19.9}) a almandínovej zložky (Alm₄₄₋₅₀). Nárast grosulárovej zložky prebiehal smerom z jadra k okraju granátu. V nami skúmaných granátoch sme identifikovali väčší rozsah zastúpenia andraditovej (Adr_{58.75-89.95}) a grosulárovej zložky (Grs_{6.83-39.67}), pričom obsahy ostatných zložiek sa vyskytujú v minimálnom množstve. Naznačený trend zvyšovania obsahu grosulárovej zložky smerom od stredu ku okrajom granátov nebol potvrdený.

Zonálnosť v magnetitoch je spôsobená variabilitou v obsahoch Si a Fe³⁺ (tab. 4). Magnetity vznikali v záverečnej fáze tvorby skarnového telesa po kryštalizácií silikátových minerálov. Faryad, Peterec (1987) predpokladajú, že Fe potrebné na tvorbu magnetitového zrudnenia pochádza z nadložných polôh tvorených lyditovým horizontom.

Záver

%

mol

zložky

Zastúpenie

V minerálnom zložení skarnov z lokality Trohanka pri Prakovciach sme bodovými mikrosondovými analýzami identifikovali zonálne klinopyroxény diopsidovo-hedenbergitového zloženia, amfiboly zastúpené fero-aktinolitom, fero-hornblendom, fero-tschermakitom a fero-pargasitom, granáty dominantne andraditového zloženia s obsahom grosulárovej komponenty a akumulácie magnetitového zrudnenia.

V klinopyroxénoch sme pozorovali kontinuálnu kompozičnú zmenu, ktorá sa prejavuje prevažne difúznym

Obr. 4 Oscilačná zonálnosť granátov: a) opticky anomálne anizotropné zóny striedajúce sa s izotropnými zónami pozorované v skrížených nikoloch v prechádzajúcom polarizovanom svetle. Foto P. Ružička; b) zóny v BSE zobrazení. Foto T. Mikuš; c) líniový profil granátom s distribúciou koncových členov.

Obr. 5 Klasifikačné diagramy a) analyzované klinopyroxény v klasifikačnom diagrame podľa Morimoto et al. (1988); b) analyzované granáty v klasifikačnom diagrame podľa Grew et al. (2013).

(0,0.0.). 0)				3									
Analýza	1	2	3	4	5	6	7	8	9	10			
Farba zóny v BSE		sve	tlá		tmavá								
SiO ₂	0	0.89	0	0	5.74	4.41	4.94	5.24	5.20	5.11			
TiO,	0	0.04	0.05	0.04	0	0.04	0.06	0.06	0.09	0.06			
Al ₂ Õ ₃	0.05	0.06	0.04	0	0.17	0.08	0.18	0.15	0.22	0.11			
Fe ₂ O ₃ *	69.45	67.32	69.13	68.91	55.33	58.59	57.64	56.41	56.36	56.92			
FeO	31.13	31.98	30.86	30.92	36.44	36.67	35.61	37.17	36.70	36.54			
MgO	0.07	0.05	0	0	0.47	0.09	0.49	0.18	0.33	0.29			
CoO	0	0.07	0.08	0	0	0	0.07	0	0	0.09			
CaO	0.02	0.15	0.04	0.12	1.14	0.16	0.96	0.49	0.64	0.48			
Suma	100.72	100.55	100.21	99.99	99.29	100.04	99.96	99.70	99.54	99.60			
Si ⁴⁺	0	0.034	0	0	0.215	0.166	0.185	0.197	0.195	0.192			
Ti ⁴⁺	0	0.001	0.001	0.001	0	0.001	0.002	0.002	0.003	0.002			
Al ³⁺	0.002	0.003	0.002	0	0.008	0.004	0.008	0.007	0.010	0.005			
Fe ³⁺	1.998	1.931	2.000	1.998	1.562	1.662	1.623	1.596	1.594	1.612			
Fe ²⁺	0.995	1.020	0.992	0.996	1.143	1.156	1.114	1.169	1.154	1.150			
Mg ²⁺	0.004	0.003	0	0	0.026	0.005	0.027	0.010	0.018	0.016			
Co ²⁺	0	0.002	0.002	0	0	0	0.002	0	0	0.003			
Ca ²⁺	0.001	0.006	0.002	0.005	0.046	0.006	0.038	0.020	0.026	0.019			
Suma	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000			

Tabuľka 4 Reprezentatívne mikrosondové analýzy magnetitov (hm. %) zo skarnov prepočítané na 4 atómy kyslíka (apfu). Symbol * vyjadruje dopočítanie pre Fe₂O₂

Obr. 6 Analyzované amfiboly porovnané so staršími prácami (Ružička et al. 2017 - amfiboly z mramorov v asociácii so zelenými bridlicami; Ružička et al. 2018 - amfiboly v asociácii so stilpnomelánom), ktoré sú vynesené do klasifikačných diagramov podľa: a) Leake et al. (1997); b) Hawthorne et al. (2012).

charakterom zonálnosti, v rámci ktorej sme vyčlenili BSE tmavú, prechodnú a svetlú zónu. Farebný kontrast v BSE zobrazení zonálnych klinopyroxénov vyplýva z pomerného zastúpenia obsahov Mg a Fe²⁺. Kým v BSE tmavej a prechodnej zóne dominujú diopsidy s postupným znižovaním obsahu Mg (0.72 - 0.56 *apfu*) na úkor zvyšovania obsahu Fe²⁺ (0.23 - 0.40 *apfu*), tak v BSE svetlej zóne s dominantným zastúpením hedenbergitu boli namerané najvyššie obsahy Fe²⁺ 0.74 *apfu* a najnižšie obsahy Mg 0.20 *apfu* (tab. 1).

Amfiboly sa v zložení skarnov prejavujú podobne ako klinopyroxény zonálnym charakterom, pričom fero-aktinolit je v BSE zobrazení len tmavý na rozdiel od fero-hornblendu s kontrastnejšou zonálnosťou. Izolované amfibolové kryštály sú v centrálnej časti tvorené v BSE zobrazení svetlejšou zónou tvorenou fero-pargasitom a v BSE zobrazení tmavšou zónou v okrajových častiach tvorenou fero-tschermakitom. Pri porovnávaní obsahov Mg a Fe²⁺ platí rovnaký trend ako v prípade klinopyroxénov. Amfiboly z BSE svetlých zón obsahujú viac Fe²⁺ (do 3.86 *apfu*) a menej Mg (do 0.33 *apfu*), kým v BSE tmavej zóne je opačný trend, ktorý sa prejavuje zvyšovaním Mg (do 1.34 *apfu*) a znižovaním Fe²⁺ (minimálne do 3.50 *apfu*; tab. 2).

V granátoch boli pozorované optické anomálie v podobe prítomných anizotropných zón, ktoré sa takmer symetricky striedajú s izotropnými zónami, čo býva typická vlastnosť granátov vznikajúcich v hydrotermálno-metasomatickom režime kontaktnej metamorfózy. Pravdepodobne tento optický fenomén oscilačnej zonálnosti je odrazom prebiehajúcich izomorfných substitúcií v rámci meniaceho sa chemického zloženia medzi grosulárovou a andraditovou zložkou v granátoch. V BSE svetlej zóne prevláda dominancia andraditovej zložky (Adr_{89.95-75.55}) na úkor grosulárovej zložky (Grs_{6.83-23.61}), kým v BSE tmavej zóne postupne narastá zastúpenie grosulárovej zložky (Grs_{19.96-39.67}) a klesá podiel andraditovej zložky (Adr_{78.66-58.75}; tab. 3).

Poďakovanie

Vyslovujeme poďakovanie recenzentom článku za podnetné pripomienky, ktoré prispeli k skvalitneniu rukopisu. Táto práca bola podporovaná Agentúrou na podporu výskumu a vývoja na základe zmluvy č. APVV-19-0065 a grantom VEGA 1/0151/19 a vznikla vďaka finančnej podpore Ministerstva kultury ČR v rámci inštitucionálneho financovania dlhodobého koncepčného rozvoja výskumnej organizácie Národní muzeum (DKRVO 2019-2023/1. II.c, 00023272).

Literatúra

- ANTAO SM, Монв S, ZAMAN M, MARR RA (2015) Ti-rich andradites: Chemistry, structure, multi-phases, optical anisotropy, and oscillatory zoning. Can Mineral 53, 1: 133-158
- BAJANÍK Š, VOZÁROVÁ A (ED.), HANZEL V, IVANIČKA J, MELLO J, PRISTAŠ J, REICHWALDER P, SNOPKO L, VOZÁR J (1983) Vysvetlivky ku geologickej mape Slovenského rudohoria - východná časť 1: 50 000. ŠGÚDŠ, Bratislava, 1-223
- BAJANÍK Š (ED.), IVANIČKA J, MELLO J, PRISTAŠ J, REICHWALDER P, SNOPKO L, VOZÁR J, VOZÁROVÁ A (1984) Geologická mapa Slovenského rudohoria - východná časť 1: 50 000. ŠGÚDŠ, Bratislava
- BALEN D, BERMANEC V, MARCI V (1997) Compositional zoning in amphibole from amphibole bearing parageneses of West Psunj (Croatia): Evidence for progressive metamorphism? Geol Croat 50, 1: 7-15

- FARYAD SW, PETEREC D (1987) Manifestations of skarn mineralization in the eastern part of the Spišsko-gemerské rudohorie Mts. Geol Zbor Geol Carpath 38, 1: 111-128
- FARYAD SW (1991a) Metamorfóza sedimentov staršieho paleozoika gemerika. Miner Slov 23, 4: 315-324
- FARYAD SW (1991a) Metamorfóza kyslých až intermediárnych vulkanitov staršieho paleozoika gemerika. Miner Slov 23, 4: 325-332
- FARYAD SW (1995) Stanovenie P-T podmienok metamorfózy horninových komplexov Spišsko-gemerského rudohoria. Miner Slov 27, 1: 9-19
- GRECULA P (1982) Gemerikum segment riftogénneho bazénu Paleotetýdy. Miner Slov monograph, 263 s
- GRECULA P (ED), ABONYI A, ABONYIOVÁ M, ANTAŠ J, BARTALSKÝ B, BARTALSKÝ J, DIANIŠKA I, DRNZÍK E, ĎUĎA R, GARGULÁK M, GAZDAČKO Ľ, HUDÁČEK J, KOBULSKÝ J, LÖRINCZ L, MAC-KO J, NÁVESŇÁK D, NÉMETH Z, NOVOTNÝ L, RADVANEC M, ROJKOVIČ I, ROZLOŽNÍK L, ROZLOŽNÍK O, VARČEK C, ZLOCHA J (1995) LOŽISKÁ NERASTNÝCH SUROVÍN Slovenského rudohoria. Zväzok 1. Miner Slov monograph, 834 s
- GRECULA P (ED.), KOBULSKÝ J, GAZDAČKO Ľ, NÉMETH Z, HRAŠKO Ľ, NOVOTNÝ L, MAGLAY J (2009) Geologická mapa Spišsko-gemerského rudohoria 1: 50 000. ŠGÚDŠ, Bratislava
- GRECULA P, KOBULSKÝ J (EDS.), GAZDAČKO Ľ, NÉMETH Z, HRAŠKO Ľ, NOVOTNÝ L, MAGLAY J, PRAMUKA S, RADVANEC M, KUCHARIČ Ľ, BAJTOŠ P, ZÁHOROVÁ Ľ (2011) Vysvetlivky ku geologickej mape Spišsko-gemerského rudohoria 1: 50 000. ŠGÚDŠ, Bratislava, 308 s
- GREW ES, LOCOCK AJ, MILLS SJ, GALUSKINA IO, GALUSKIN EV, HALENIUS U (2013) Nomenclature of the garnet supergroup. Am Mineral 98, 4: 785-811
- HAWTHORNE CF, OBERTI R, HARLOW G, MARESCH VW, SCHU-MACHER CJ, WELCH M (2012) Nomenclature of the amphibole supergroup. Am Mineral 97: 2031-2048
- IVANIČKA J, SNOPKO L, SNOPKOVÁ P, VOZÁROVÁ A (1989) Gelnica Group - lower unit of Spišsko-gemerské rudohorie Mts. (West Carpathians) Early Palaeozoic. Geol Zbor Geol Carpath 40, 4: 483-501
- IVANOVA TI, SHTUKENBERG AG, PUNIN YO, FRANK-KAME-NETSKAYA OV, SOKOLOV PB (1998) On the complex zonality in grandite garnets and implications. Mineral Mag 62, 6: 857-868
- JAMTVEIT B, RAGNARSDOTTIR KV, WOOD BJ (1995) On the origin of zoned grossular-andradite garnets in hydrothermal systems. Eur J Miner 7: 1339-1410
- LAMOŠ A (1969) Štruktúrno-geologické a litologické pomery v oblasti Prakoviec, Kojšova a Zlatej Idky. Záverečná správa za roky 1966-1969. MS, Geofond - archív ŠGÚDŠ, Bratislava, 70 s
- LAMOŠ A (1972) Vysvetlivky ku geologickej mape list Prakovce 1:25 000 - čiastková úloha. MS, Geofond - archív ŠGÚDŠ, Bratislava, 51 s
- LEAKE BE, WOOLLEY AR, ARPS CES, BIRCH WD, GILBERT MC, GRICE JD, HAWTHORNE FC, KATO A, KISCH HJ, KRIVOVI-CHEV VG, LINTHOUT K, LAIRD J, MANDARINO JA, MARESCH WV, NICKEL EH, SCHUMACHER JC, SMITH DC, STEPHENSON NCN, UNGARETTI L, WHITTAKER EJW, YOUZHI G (1997) Nomenclature of amphiboles. Can Mineral 35: 219-246
- LEXA J, BAČO P, HURAI V, CHOVAN M, KODĚRA P, PETRO M, ROJKOVIČ I, TRÉGER M (2007) Vysvetlivky k metalogenetickej mape Slovenskej republiky 1: 500 000. ŠGÚDŠ, Bratislava, 1-178

- MADERSPACH L (1880) Magyarország vasérczfekhelyei. Budapest, 1-111
- MAZÚR E, LUKNIŠ M (1980) Geomorfologické jednotky (mapa 1: 500 000). Mazúr E, Jakál J (eds) Atlas SSR. SAV a Slov. úrad geod. a kart., Bratislava, 54-55
- MEINERT LD, DIPPLE GM, NICOLESCU S (2005) World skarn deposits. In: HEDENQUIST JW, THOMPSON JFH, GOLDFARB RJ, RICHARDS JP (eds.) Economic geology 100th Anniversary Volume 1905-2005. Elsevier Science BV, Amsterdam, 299-336
- MIRI M, SEPAHI AA, ALIANI F, MAANIJOU M (2016) Chemical zoning of Ca-amphiboles in amphibolites, from the Hamedan area, West Iran. Arab J Geosci 9: 619
- MORIMOTO N, FABRIES J, FERGUSON AK, GINZBURG IV, ROSS M, SEIFERT FA, ZUSSMAN J (1988) Nomenclature of pyroxenes. Am Mineral 73: 1123-1133
- PAPP K (1919) Die Eisenerz und Kohlenvorräte des Ungarischen Reiches. Ungar Ackerbau Ministerium geol Anstalt, Budapest, 1-638
- PARK C, CHOI W, KIM H, PARK M-H, KANG I-M, LEE H-S, SONG Y (2017) Oscillatory zoning in skarn garnet: implication for tungsten ore exploration. Ore Geol Rev 89: 1006-1018
- PUTIŠ M, SERGEEV S, ONDREJKA M, LARIONOV A, SIMAN P, SPIŠIAK J, UHER P, PADERIN I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record the Gondwana active margin setting. Geol Carpath 59: 3-18
- RADVANEC M, KONEČNÝ P, ONDREJKA M, PUTIŠ M, UHER P, NÉMETH Z (2009) Granity gemerika ako indikátor extenzie kôry nad neskorovariskou subdukčnou zónou a pri ranoalpínskej riftogenéze (Západné Karpaty): interpretácia podľa veku monazitu a zirkónu datovaného metódou CHIME a SHRIMP. Miner Slov 41, 4: 381-394
- Ružička P, Mikuš T, ŠTEVKO M, Bačik P (2017) Zonálne amfiboly v kontaktnej zóne mramorov a metabazitov na lokalite Trohanka pri Prakovciach (Volovské vrchy, Slovenská republika). Bull Mineral Petrolog 25, 1: 12-22
- RUŽIČKA P, MIKUŠ T, ŠTEVKO M, BAČÍK P (2018) Stilpnomelán z lokality Trohanka pri Prakovciach (Volovské vrchy, Slovenská republika). Bull Mineral Petrolog 26, 1: 28-36
- SLÁVIK J, BARTALSKÝ J, BYSTRICKÝ J, HRUŠKOVIČ S, POLÁK S, URBAN K, ŤAPÁK M, ILAVSKÝ J, KANTOR J (1967) Nerastné suroviny Slovenska. SVTL, Bratislava, 1-510

- SNOPKO L (1967) Litologická charakteristika gelnickej série. Sbor Geol Vied ZK 7: 103-152
- SNOPKOVÁ P, SNOPKO L (1979) Biostratigrafia gelnickej série v Spišsko-gemerskom rudohorí na základe palinologických výsledkov (Západné Karpaty, paleozoikum). Západ Karpaty sér geol 5: 57-102
- SOTÁK J, VOZÁROVÁ A, IVANIČKA J (1999) New microfossils from the Early Paleozoic formation of the Gemericum (Foraminiferida). Special Issue from the Geol. Conf. Carpathian Geology 2000 in Smolenice. Geol Carpath 50: 72-74
- SOTÁK J, VOZÁROVÁ A, IVANIČKA J (2000) A new microfossils from the Early Paleozoic formations of the Gemericum. Slovak Geol Mag 6, 2-3: 275-277
- VOZÁROVÁ A, SOTÁK J, IVANIČKA J (1998) A new microfauna from the Early Paleozoic formations of the Gemericum (foraminifera): constrains for other fossils or subfossils. In: Rakús M (ed.): Geodynamic development of the Western Carpathians. Geological Survey of Slovak republic, Bratislava: 63-74
- VOZÁROVÁ A, SOTÁK J, IVANIČKA J (1999) Cambro-Ordovician fossils (conodontes, foraminiferes, chitinous shields) from the metamorphic series of the Gemericum (Western Carpathians). Jour Confer Abstr EUG 10 Vol 4, No 1, p. 266
- VOZÁROVÁ A, ŠARINOVÁ K, LARIONOV A, PRESNYAKOV S, SER-GEEV S (2010) Late Cambrian/Ordovician magmatic arc type volcanism in the Southern Gemericum basement, Western Carpathians, Slovakia: U-Pb (SHRIMP) data from zircons. Int J Earth Sci (Geol Rundsch) 99, 1: 17-37
- VOZÁROVÁ A, RODIONOV N, ŠARINOVÁ K, PRESNYAKOV S (2016) New zircon ages on the Cambrian-Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch) 106, 6: 2147-2170
- YU F, SHU Q, NIU X, XING K, LI L, LENTZ DR, ZENG Q, YANG W (2020) Composition of garnet from the Xianghualing skarn Sn deposit, south China: Its petrogenetic significance and exploration potential. Minerals 10, 456: 1-17
- ZHAI DG, LIU JJ, ZHANG HY, WANG JP, SU L, YANG XA, WU SH (2014) Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS evidence. Lithos 190-191: 279-291