https://doi.org/10.46861/bmp.28.001

PŮVODNÍ PRÁCE/ORIGINAL PAPER

Hydrotermálny bastnäsit-(Ce) zo štôlne Elisabeth pri Gemerskej Polome (Slovenská republika)

Hydrothermal bastnäsite-(Ce) from the Elisabeth adit near Gemerská Poloma (Slovak Republic)

MARTIN ŠTEVKO^{1,2)*}, JIŘÍ SEJKORA²⁾ A ZDENĚK DOLNÍČEK²⁾

¹⁾Ústav vied o Zemi, Slovenská akadémia vied, Dúbravská cesta 9, 840 05 Bratislava, Slovenská republika; *e-mail: msminerals@gmail.com

²⁾Mineralogicko-petrologické oddělení, Národní muzeum, Čirkusová 1740, 193 00 Praha 9 - Horní Počernice, Česká republika

ŠTEVKO M, SEJKORA J, DOLNIČEK Z (2020) Hydrotermálny bastnäsit-(Ce) zo štôlne Elisabeth pri Gemerskej Polome (Slovenská republika). Bull Mineral Petrolog 28(1): 1-8 ISSN 2570-7337

Abstract

Bastnäsite-(Ce), ideally CeCO₃F, was recently found at the dumps of the Elisabeth adit near Gemerská Poloma, Rožňava Co., Košice Region, eastern Slovakia. It forms orange-brown aggregates up to 2 × 1 cm with vitreous to greasy lustre, which occur in the hydrothermal quartz veins crosscutting the coarse-grained, porphyritic rare metal S-type granite. Bastnäsite-(Ce) is closely associated with white, pale-green to purple fluorite, siderite and minor pyrite. It is hexagonal, space group *P*-62*c* with refined unit-cell parameters: a 7.1354(1) Å, *c* 9.7954(2) Å and *V* 431.90(1) Å³. The empirical formula of bastnäsite-(Ce) from the Gemerská Poloma based on sum of all cations = 1 *apfu* is (Ce_{0.49} La_{0.22}Nd_{0.15}Pr_{0.05}Sm_{0.03}Th_{0.02}Ca_{0.02}Gd_{0.01}Y_{0.01})_{Σ 1.00}(CO₃)_{1.00}F_{0.83}(OH)_{0.17}. The Raman and infrared spectra of bastnäsite-(Ce) as well as tentative assignment of observed bands are given in this paper. Bastnäsite-(Ce) and associated minerals were formed from the early-hydrothermal post-magmatic fluids related to the adjacent granite.

Key words: bastnäsite-(Ce), X-ray powder data, chemical composition, Raman and IR spectroscopy, Elisabeth adit, Gemerská Poloma, Slovak Republic

Obdrženo 18. 1. 2020; přijato 26. 3. 2020

Úvod

Minerály bastnäsitovej skupiny sú najrozšírenejšími fluórkarbonátmi REE v prírode a sú významným zdrojom prvkov vzácnych zemín (REE). Na území Slovenskej republiky je známych niekoľko výskytov minerálov bastnäsitovej skupiny. Bastnäsit-(Ce) v podobe mikroskopických agregátov v asociácii spolu s fluoritom, monazitom-(Ce) a pyritom je známy z S-typových granitov na lokalite Gemerská Poloma - Dlhá dolina (Malachovský et al. 1992). Bastnäsit-(Ce) bol identifikovaný aj v obliakoch granitov A-typu z kriedových úpohlavských zlepencov v Pieninskom bradlovom pásme (Uher 1994; Uher et al. 2015). Pestrá asociácia minerálov bastnäsitovej skupiny (bastnäsit-(Ce), bastnäsit-(La), hydroxylbastnäsit-(Ce), hydroxylbastnäsit-(La) a hydroxylbastnäsit-(Nd)) mikroskopických rozmerov je známa zo spodnotriasových ryolitov A-typu na lokalite Tisovec - Rejkovo (Ondrejka et al. 2007). Bastnäsit-(Ce) v asociácii spolu so synchyzitom-(Ce) je známy tiež z výskytu Zr-REE-Nb mineralizácie v metatrachydacitoch pri Hnilčíku (Uher et al. 2010). Hydroxylbastnäsit-(Ce) a bastnäsit-(Ce) boli zistené ako produkty rozpadu monazitu-(Ce) a allanitu-(Ce) v ortorulách severného veporika na lokalite Veľký Zelený potok pri Beňuši a Lopej (Ondrejka et al. 2012, 2016).

Tento príspevok prináša informácie o novom výskyte bastnäsitu-(Ce) z kremeňových žíl v granitoch zo štôlne Elisabeth v Gemerskej Polome a jeho detailnú mineralogickú charakteristiku.

Geologicko-ložisková charakteristika lokality

Mastencové ložisko sprístupnené štôlňou Elisabeth sa nachádza približne 7 km na SSV od obce Gemerská Poloma v Spišsko-gemerskom rudohorí. Skryté teleso magnezitu s polohami mastenca bolo objavené v roku 1985 vrtom V-DD-10 pri vyhľadávacom prieskume na Sn v Dlhej doline (Malachovský et al. 1992). Následným ložiskovým vrtným prieskumom (vrty V-DD-26 až V-DD-40) bolo overené rozsiahle teleso steatitizovaného magnezitu s dĺžkou 2.7 km a šírkou 1.2 km a boli vypočítané bilančné zásoby 85 384 kt mastenca v kategórii Z-3, vďaka čomu sa toto ložisko radí k najväčším v Európe (Kilík et al. 1995; Kilík 1997). Od roku 1997 do roku 2004 vlastnila dobývací priestor na ložisku Gemerská Poloma spoločnosť Rozmin, s.r.o./Eurogas. V tejto etape bolo vyvŕtaných ďalších 6 prieskumných vrtov a začalo sa s razbou úpadnice z Dlhej doliny. Po zmene práv na dobývací priestor začala spoločnosť VSK Mining/euroTalc s.r.o. vo februári 2007 s razením novej otvárkovej štôlne Elisabeth s dĺžkou 4200 m a od roku 2009 sa postupne začalo s detailným banským prieskumom ložiska a následne aj s ťažbou mastenca.

Na geologickej stavbe širšieho okolia ložiska sa podieľajú horniny staršieho paleozoika gelnickej skupiny gemerika, najmä metasedimenty (prevažne fylity) a metavulkanity (porfyroidy) vlachovského súvrstvia a súvrstvia Bystrého potoka (sensu Bajaník et al. 1984), respektíve betliarskeho a smolníckeho súvrstvia (sensu Grecula et al. 2009). Teleso magnezitu s mastencom leží v tektonickej pozícii na telese permských peraluminóznych granitov S-typu (Kilík et al. 1995; Kilík 1997), ktoré sú charakteristické zvýšenými obsahmi K, Rb, Cs, Li, B, Sn, Nb, Ta, W a F (Uher, Broska 1996; Broska, Uher 2001; Poller et al. 2002; Dianiška et al. 2002; Kubiš, Broska 2010; Breiter et al. 2015; Broska, Kubiš 2018) a v 80-tych rokoch 20. storočia boli v oblasti Dlhej doliny predmetom vyhľadávacieho prieskumu na cín (Malachovský et al. 1983, 1992). Okrem dominantného magnezitu a mastenca je v ložiskovom telese prítomný aj dolomit, kremeň, chlority, grafit, pyrit, pyrotit, chalkopyrit, fluórapatit a dravit (Kilík et al. 1995; Kilík 1997; Petrasová et al. 2007; Bačík et al. 2011). V oblasti Gemerskej Polomy - Dlhej doliny boli vrtnými prácami overené štyri typy granitoidných hornín: a) hrubozrnné porfyrické granity až granitové porfýry, b) strednozrnné granity s obsahom Li-annitu, topásu a turmalínu, c) P-obohatené topás-cinvalditové leukogranity a d) albitity (Malachovský et al. 1992; Dianiška et al. 2002; Breiter et al. 2015). Úvodným prekopom ako aj naväzujúcimi prieskumnými a prevádzkovými banskými dielami v štôlni Elisabeth boli na viacerých miestach zasiahnuté okrem albititov všetky vyššie uvedené typy granitoidných hornín, ktoré sú často prerážané početnými kremeňovými žilami (Števko et al. 2015). V týchto hydrotermálnych kremeňových žilách je relatívne častý fluorit, albit, chlority, rutil, minerály turmalínovej skupiny, karbonáty (siderit, dolomit, kalcit, rodochrozit), sulfidy (najmä sfalerit, arzenopyrit a pyrit), pestrá asociáciia Bi a Pb-Sb sulfosolí, minerály tetraedritovej skupiny, fluórapatit, polykras-(Y) až uranopolykras a vzácne aj beryl (Uher et al. 2009; Števko et al. 2015, 2018; Števko, *nepublikované údaje*). V kremeňových žilách, ktoré prerážajú P-obohatené topás-cinvalditové leukogranity, bola zistená aj zaujímavá asociácia fosfátov reprezentovaná fluórapatitom, triplitom, viitaniemiitom a novým minerálom, fluórarrojaditom-(BaNa) (Števko et al. 2015, 2018).

Metodika

Röntgenové práškové difrakčné údaje bastnäsitu-(Ce) boli získané pomocou práškového difraktometra Bruker D8 Advance (Národní muzeum, Praha, ČR) s polovodičovým pozične citlivým detektorom LynxEye s využitím CuKα žiarenia za nasledovných podmienok: napätie 40 kV, prúd 40 mA, krok 0.01° 20, čas 8 s/krok detektoru, celkový čas experimentu cca 15 hodín. Pripravený práškový preparát bol pre zníženie pozadia záznamu nanesený bez média na nosič zhotovený z monokryštálu Si. Pozície jednotlivých difrakčných maxím boli vyhodnotené pomocou programu ZDS pre DOS (Ondruš 1993) za použitia profilovej funkcie Pearson VI.

Obr. 1 Hnedooranžový agregát bastnäsitu-(Ce) zarastený spolu s bielym až fialovým hrubozrnným fluoritom v kremeni; Gemerská Poloma, foto P. Škácha, šírka záberu je 12 mm.

Tabuľka 1 Röntgenové práškové údaje bastnäsitu-(Ce) z Gemerskej Polomy

h	k	Ι	$d_{_{obs}}$	I _{obs}	d _{calc}	h	k	Ι	d _{obs}	I _{obs}	d _{calc}	h	k	Ι	d _{obs}	I _{obs}	d _{calc}
0	0	2	4.898	25.7	4.898	3	0	0	2.0597	44.7	2.0598	0	0	6	1.6326	1.0	1.6326
1	1	0	3.568	100.0	3.568	1	1	4	2.0191	21.7	2.0190	3	0	4	1.5763	6.3	1.5763
1	1	2	2.884	73.7	2.884	3	0	2	1.8987	29.3	1.8987	1	1	6	1.4845	2.9	1.4845
0	0	4	2.4487	5.3	2.4489	2	2	0	1.7838	8.0	1.7839	2	2	4	1.4419	4.3	1.4419
2	1	1	2.2718	2.0	2.2719	2	2	2	1.6762	12.7	1.6761	4	1	0	1.3485	3.3	1.3485

Tabuľka 2 Mriežkové parametre bastnäsitu-(Ce) z Gemerskej Polomy (indexované v hexagonálnej priestorovej grupe P-62c) a ich porovnanie s publikovanými údajmi

		a [Å]	c [Å]	V [ų]
bastnäsit-(Ce)	táto práca	7.1354(1)	9.7954(2)	431.90(1)
bastnäsit-(Ce)	Ni et al. (1993)	7.1175	9.7619	428.272
bastnäsit-(Ce)	Donnay, Donnay (1953)	7.16	9.78	434.7
bastnäsit-(Ce)	Oftedal (1931)	7.094(7)	9.718(8)	423.54

Chemické zloženie bastnäsitu-(Ce) bolo kvantitatívne študované pomocou elektrónového mikroanalyzátora Cameca SX100 (Národní muzeum, Praha, ČR; analytik Z. Dolníček) za týchto podmienok: WD analýza, napätie 15 kV, prúd 20 nA, priemer elektrónového lúča 2 µm, štandardy a použité spektrálne čiary: albit (NaK α), barit (BaL α), bizmut (BiM α), BN (NK α), celestín (SK α , SrL β), CePO₄ (CeL α), DyPO₄ (DyL β), EuPO₄ (EuL α), ErPO₄ (ErL α), fluórapatit (PK α), GdPO₄ (GdL α), halit (CIK α), hematit (FeK α), Hf (HfL β), HoPO₄ (LaL α), LiF (FK α), LuPO₄ (LuL α), NdPO₄ (NdL β), PrPO₄ (PrL β), rodonit (MnK α), sanidín (AlK α , KK α), SmPO₄ (SmL α), ScVO₄ (ScK α), Th (ThM α), TbPO₄ (TbL α), TiO₂ (TiK α), TmPO₄ (TmL α), UO₂ (UM α), V

(VKα), vanadinit (PbMα), wollastonit (SiKα, CaKα), YVO₄ (YLα), YbPO₄ (YbLα) a zirkón (ZrLα). Obsahy vyššie uvedených prvkov, ktoré nie sú zahrnuté v tabuľkách, boli kvantitatívne analyzované, ale zistené koncentrácie boli pod detekčným limitom elektrónovej mikroanalýzy (cca 0.03 - 0.30 hm. % pre jednotlivé prvky). Získané údaje boli korigované pomocou softvéru PAP (Pouchou, Pichoir 1985).

Ramanove spektrum bastnäsitu-(Ce) bolo získané pomocou disperzného spektrometra DXR (Thermo Scientific) spojeného s konfokálnym mikroskopom Olympus (Národní muzeum, Praha, ČR) za nasledovných podmienok: zväčšenie objektívu 100×, použitý laser 633 nm, rozsah merania 50 - 4000 cm⁻¹, doba expozície 10 s, cel-

Tabuľka 3	Chemické zloženie	bastnäsitu-(Ce)	z Gemerskej Polomy
-----------	-------------------	-----------------	--------------------

	1	2	3	4	5	6	7	8	9	10
CaO	0.32	0.13	0.12	0.30	0.54	0.24	0.52	0.20	0.40	0.40
SrO	0.17	0.00	0.14	0.12	0.24	0.23	0.15	0.18	0.22	0.27
Y_2O_3	0.45	0.19	0.25	0.38	0.77	0.39	0.65	0.12	0.40	0.37
La ₂ O ₃	15.86	18.61	19.45	15.47	12.96	17.12	13.97	17.65	16.18	15.65
Ce ₂ O ₃	35.55	33.94	35.33	34.83	34.24	34.92	35.72	36.59	35.52	35.37
Pr_2O_3	3.89	3.40	3.57	3.59	4.04	3.60	3.83	3.66	3.46	3.67
Nd_2O_3	11.15	10.97	10.28	10.79	12.85	11.63	11.62	11.01	11.09	11.30
Sm_2O_3	2.17	1.69	1.57	2.06	2.65	1.95	2.51	1.71	2.07	2.12
Eu ₂ O3	0.00	0.11	0.07	0.10	0.16	0.14	0.10	0.18	0.26	0.17
Gd_2O_3	0.85	0.68	0.70	0.64	1.16	0.80	0.88	0.73	0.97	0.92
Bi ₂ O ₃	0.54	0.42	0.37	0.41	0.48	0.58	0.30	0.41	0.46	0.43
ThO ₂	2.36	0.76	0.62	2.37	3.22	1.20	3.52	1.24	3.01	2.67
CO ₂ *	19.44	18.91	19.38	18.80	19.57	19.47	19.52	19.66	19.70	19.55
SiO ₂	0.11	0.00	0.00	0.00	0.00	0.00	0.19	0.00	0.00	0.00
P_2O_5	0.00	0.00	0.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00
F	5.89	6.71	6.37	6.19	6.09	6.26	6.26	6.29	6.57	6.21
CI	0.07	0.04	0.05	0.05	0.04	0.06	0.03	0.09	0.03	0.06
	1.19	0.68	0.93	0.92	1.11	1.00	1.05	1.02	0.91	1.04
	-2.50	-2.83	-2.69	-2.62	-2.57	-2.65	-2.64	-2.67	-2.77	-2.63
Iotal	97.51	94.41	96.51	94.58	97.55	96.94	98.18	98.07	98.48	97.57
Ca ²⁺	0.013	0.005	0.005	0.012	0.022	0.010	0.021	0.008	0.016	0.016
Sr ²⁺	0.004	0.000	0.003	0.003	0.005	0.005	0.003	0.004	0.005	0.006
Y ³⁺	0.009	0.004	0.005	0.008	0.015	0.008	0.013	0.002	0.008	0.007
La³⁺	0.220	0.266	0.271	0.221	0.179	0.238	0.192	0.243	0.222	0.216
Ce ³⁺	0.488	0.481	0.489	0.494	0.469	0.481	0.487	0.499	0.484	0.485
Pr ³⁺	0.053	0.048	0.049	0.051	0.055	0.049	0.052	0.050	0.047	0.050
Nd ³⁺	0.149	0.152	0.139	0.149	0.172	0.156	0.155	0.147	0.147	0.151
Sm³⁺	0.028	0.023	0.020	0.027	0.034	0.025	0.032	0.022	0.027	0.027
Eu³⁺	0.000	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.003	0.002
Gd³⁺	0.011	0.009	0.009	0.008	0.014	0.010	0.011	0.009	0.012	0.011
BI ^{o+}	0.005	0.004	0.004	0.004	0.005	0.006	0.003	0.004	0.004	0.004
<u> </u>	0.020	0.007	0.005	0.021	0.027	0.010	0.030	0.011	0.025	0.023
Σ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
C ⁴⁺	0.996	1.000	1.000	0.994	1.000	1.000	0.993	1.000	1.000	1.000
Si ⁴⁺	0.004	0.000	0.000	0.000	0.000	0.000	0.007	0.000	0.000	0.000
P ⁵⁺	0.000	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000
Σ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
F⁻	0.699	0.822	0.761	0.758	0.721	0.745	0.738	0.741	0.773	0.736
Cl	0.004	0.003	0.003	0.003	0.003	0.004	0.002	0.006	0.002	0.004
OH	0.298	0.176	0.234	0.238	0.277	0.251	0.261	0.254	0.226	0.260
Σ	1.001	1.000	0.999	0.999	1.001	1.000	1.001	1.000	1.000	1.000
Eu/Eu*	<0.08	0.31	0.20	0.26	0.28	0.34	0.20	0.49	0.56	0.37
La,/Sm.	4.52	6.81	7.66	4.64	3.02	5.43	3.44	6.38	4.83	4.57
<u> </u>										

empirický vzorec bol počítaný na sumu katiónov = 1 *apfu*; * obsahy CO₂ a H₂O boli dopočítané na základe ideálneho vzorca bastnäsitu-(Ce): CeCO₃F.

kový počet expozícií 300, výkon laseru 8 mW, apertúra 25 µm pinhole, veľkosť meranej stopy 0.7 µm. Reprezentatívne spektrum bolo vybrané zo setu meraných spektier získaných na rôznych rezoch zín bastnäsitu-(Ce) z dôvodu dosiahnutia nejlepšieho odstupu signálu od pozadia a minimálneho rozsahu fluorescencie. Možné termické poškodenie meraných miest bolo sledované pomocou vizuálnej kontroly povrchu vzorky po meraní ako aj prípadných zmien spektra v priebehu merania. Spektrometer bol kalibrovaný pomocou softvérovo riadenej procedúry s využitím emisných línií neónu (kalibrácia vlnočtu), Ramanových pásov polystyrénu (kalibrácia frekvencie laseru) a štandardizovaného zdroja bieleho svetla (kalibrácia intenzity). Získané spektrá boli spracované pomocou programu Omnic 9 (Thermo Scientific).

Infračervené vibračné spektrum bastnäsitu-(Ce) z Gemerskej Polomy bolo získané metódou attenuated total reflection (ATR) na spektrometri Nicolet iS5 (Národní muzeum, Praha, ČR) za týchto podmienok: rozsah 4000 - 400 cm⁻¹, počet skenov 64, rozlíšenie 4 cm⁻¹, rýchlosť zrkadla 0.4747 cm/s.

Výsledky

Študované vzorky s bastnäsitom-(Ce) boli nájdené v čerstvej rúbanine na halde štôlne Elisabeth vo februári 2016. Bastnäsit-(Ce) sa vyskytol v 4 cm hrubej kremeňovej žile, ktorá preráža blok hrubozrnného porfyrického granitu s obsahom turmalínu. Bastnäsit-(Ce) je na lokalite zriedkavý, doteraz boli nájdené len dve vzorky.

Bastnäsit-(Ce) vytvára hnedooranžové agregáty a zhluky do 2 × 1 cm zarastené v kremeni (obr. 1), ktoré pozostávajú z jednotlivých zŕn do 4 mm so skleným až mastným leskom. V asociácii spolu s bastnäsitom-(Ce) sa vyskytujú až 5 cm veľké, hrubozrnné agregáty bieleho, bielozeleného až fialového fluoritu a lokálne aj zrná a agregáty sideritu a pyritu. V BSE je študovaný bastnäsit -(Ce) chemicky homogénny.

Röntgenové práškové difrakčné údaje bastnäsitu-(Ce) z Gemerskej Polomy (tab. 1) dobre zodpovedajú publikovaným údajom pre túto minerálnu fázu ako aj teoretickému práškovému záznamu, ktorý bol vypočítaný programom Lazy Pulverix (Yvon et al. 1977) z údajov o kryštálovej štruktúre bastnäsitu-(Ce) (Ni et al. 2000). Mriežkové parametre študovaného bastnäsitu-(Ce) z Gemerskej Polomy spresnené pomocou programu Burnhama (1962) sú v tabuľke 2 porovnané s publikovanými údajmi pro túto minerálnu fázu.

V katiónovej pozícii bastnäsitu-(Ce) z Gemerskej Polomy (tab. 3) dominuje Ce (0.47 - 0.50 apfu) nad ostatnými REE a Y. Okrem Ce boly zistené aj výraznejšie obsahy La (0.18 - 0.27 apfu) a Nd (0.14 - 0.17 apfu). Z ďalších prvkov sú minoritne prítomné aj Ca, Sr, Bi (do 0.01 - 0.02 apfu) a najmä Th do 0.03 apfu. Chondritom normalizovaná distribúcia REE (obr. 2) vykazuje obvyklý plynulý pokles od La k ťažším REE, prerušený výraznou negativnou Eu anomáliou. Stupeň frakcionácie REE je v študovanom bastnäsite-(Ce) značne variabilný (La, /Sm, = 3.0 - 7.7), pravdepodobne v dôsledku vysokej koncentrácie F a ďalších silných REE-komplexujúcich ligandov v zdrojových fluidách. Veľkosť Eu anomálie (McLennan 1989) sa pohybuje medzi <0.08 a 0.56 (tab. 3). Výrazná negatívna Eu anomália môže byť zdedená zo zdrojových granitov, ktoré sa tiež vyznačujú výraznou negatívnou Eu anomáliou (Uher, Broska 1996; Broska, Uher 2001), alebo svedčí o teplote materských fluíd nad cca 200 °C. respektive o nízkom Eh fluíd (Bau, Möller 1992; Lee et al. 2003; Dolníček, Ulmanová 2019). V aniónovej časti vzorca je dominantne zastúpený karbonátový anión len lokálne doprevádzaný minoritnými obsahmi Si a P, ktoré neprevyšujú 0.01 apfu. Zistené obsahy F v rozmedzí 0.70 - 0.82 apfu doprevádzané stopovým zastúpením CI (do 0.01 *apfu*) indikujú zvýšený obsah hydroxylových skupín (0.18 - 0.30 pfu) v kryštálovej štruktúre študovaného bastnäsitu-(Ce).

Ramanove spektrum študovaného bastnäsitu-(Ce) (obr. 3, tab. 4) v základných rysoch zodpovedá publikovaným spektrám pre túto minerálnu fázu (Frost, Dickfos 2007; Yang et al. 2008). Bastnäsit-(Ce) s ideálnym vzorcom Ce(CO₃)F obsahuje vo svojej kryštálovej štruktúre okrem katiónu Ce³⁺ jeden karbonátový anión a dva neekvivalentné atómy F (Ni et al. 1993). Voľným karbonátovým iónom (CO₃)²⁻ (symetria D_{3h}) prislúchajú nasledovné fundamentálne vibrácie: v₁ symetrická valenčná vibrácia A₁' (Raman aktívna), v₂ (δ) out-of-plane deformačná vibrácia A₂'' (IR aktívna), v₃ dvojnásobne degenerovaná an-

Obr. 2 Chondritom normalizovaná distribúcia REE v bastnäsite-(Ce) z Gemerskej Polomy. Normalizačné hodnoty podľa práce Anders, Grevesse (1989).

tisymetrická valenčná vibrácia E´ (Raman a IR aktívna), a v₄ (δ) dvojnásobne degenerovaná in-plane deformačná vibrácia E´´ (Raman a IR aktívna). Jednotlivým vibráciám zodpovedajú pásy pri 1063, 879, 1415 a 680 cm⁻¹. Karbonátové ióny môžu tvoriť mono- a bidentátne viazané komplexy s katiónmi, kde sa symetria znižuje z D_{3h} napríklad až na C_{2v}, čo spôsobuje rozštiepenie degenerovaných vibrácií a ich aktiváciu v infračervenom aj Ramanovom spektre (Nakamoto 2009; Čejka et al. 2013).

V oblasti valenčných vibrácií OH (4000 - 3000 cm⁻¹) boli v študovanom bastnäsite-(Ce) pozorované zretelné pásy s maximami pri 3354, 3281, 3216 a 3174 cm⁻¹, vlnočty týchto pásov sú nižšie než pásy zistené v prípade hydroxylbastnäsitu-(Ce) (3400 - 3800 cm⁻¹,Yang et al. 2008; Michiba et al. 2013); v prípade bastnäsitu-(Ce) bez významnejšieho zastúpenia (OH) skupín pásy v tejto oblasti neboli pozorované (Yang et al. 2008). Čiastočne odlišný charakter spektra v tejto oblasti uvádzajú Frost, Dickfos (2007) pre bastnäsit-(Ce) z Pakistanu, pre študovaný materiál ale neuvádzajú žiadne informácie o jeho chemickom zložení. Z pozícií maxím valenčných vibrácií je na základe práce Libowitzkého (1999) možné odvodiť približné dĺžky vodíkových väzieb O-H×××O v štruktúre bastnäsitu-(Ce) z Gemerskej Polomy v rozmedzí 2.70 -2.77 Å, čo je v súlade s hodnotami 2.695 a 2.756 Å, ktoré boli zistené pri štúdiu kryštálovej štruktúry bastnäsitu-(Ce)

Tabuľka 4 Vlnočty v Ramanovom spektre bastnäsitu-(Ce) z Gemerskej Polomy a ich porovnanie s publikovanými údajmi pre tento minerál

Gemerská Poloma	1*	2*	3*	
			3651	
			3620	
3354			3355	v OH valančná vibrácia (OH)- skupín
3281			3276	
3216			3203	
3174			3169	
1740	1738	1728	1737	
			1504	y anticymatrická valoněná vibrácia (CO) ²⁻
1430	1445	1433	1432	
1097	1097	1085	1096	v ₁ symetrická valenčná vibrácia (CO ₃) ²⁻
739	736	719	735	
607	606		601	v ₄ deformačná vibrácia (CO ₃) ²⁻
	566			
399	352		402	
		288	286	
263	260		261	Ce-(F/OH) valenčné vibrácie a vibrácie mriežky
			234	
175	161	181	175	
121				
1* - Nórsko (Frost, Dick	(fos 2007	'): 2* - Ka	nada (Fi	rost, Dickfos 2007); 3* - Pakistan (Frost, Dickfos 2007)

(Ni et al. 1993). Nevýrazný pás pri 1430 cm⁻¹ prislúcha dvojnásobne degenerovanej v₃ antisymetrickej valenčnej vibrácii (CO,)2-. Nejintenzívnejší ostrý pás s maximom pri 1097 cm⁻¹ je spojený so symetrickou valenčnou vibráciou v, (CO₂)²⁻. Jednoduchý a úzky profil tohto pásu potvrzuje prítomnosť jednej karbonátovej skupiny v kryštalovej štruktúre študovaného bastnäsitu-(Ce). Naopak viac neekvivalentných karbonátových skupín v kryštalovej štruktúre hydroxylbastnäsitu-(Ce) sa prejavuje prítomnosťou minimálne troch blízkých a ostrých pásov v tejto oblasti (1098, 1087 a 1080 cm⁻¹; Yang et al. 2008). Menej intenzívne pásy v oblasti 750 - 500 cm-1 pravdepodobne zodpovedajú dvojnásobne degenerovanej v_4 in-plane deformačnej vibrácii. Pásy pozorované v oblasti pod 500 cm⁻¹ sú najskôr prejavom valenčných vibrácií Ce-(F/OH) a mriežkových módov.

Infračervené spektrum bastnäsitu-(Ce) z Gemerskej Polomy (obr. 4) dobre zodpovedá publikovaným údajom (Adler, Kerr 1963; Frost, Dickfos 2007; Chukanov 2014) pre bastnäsit-(Ce) (tab. 5). Dominantným rysom infračerveného spektra je široký pás s maximami pri 1435 a 1410 cm⁻¹, ktoré zodpovedajú dvojnásobne degenerovanej v₃ antisymetrickej valenčnej vibrácii $(CO_3)^{2-}$, v_1 symetrická valenčná vibrácia $(CO_3)^2$ sa prejavuje menej intenzívnym a ostrým pásom pri 1087 cm⁻¹. Veľmi intenzívny pás pri 867 cm⁻¹ s ramienkom pri 841 cm⁻¹ je prejavom v_2 out-of -plane deformačnej vibrácie a menej intenzívne pásy v oblasti 750 - 600 cm⁻¹ zasa dvojnásobne degenerovanej in-plane deformačnej vibrácie v_4 . Na rozdiel od Ramano-vho spektra sa v infračervenom spektre študovanej vzor-ky v oblasti 4000 - 3000 cm⁻¹ zreteľne neprejavujú vibrácie (OH)⁻ skupín, ktoré čiastočne substituujú F.

Záver

Na halde štôlne Elisabeth pri Gemerskej Polome bol v kremeňových žilách, ktoré prerážajú špecializované S-typové granity zistený výskyt bastnäsitu-(Ce). Tento nález dopĺňa už tak veľmi pestrú minerálnu asociáciu (najmä sulfidy, sulfosoli, fluorit, karbonáty, fosfáty a silikáty), ktorá bola zistená v týchto hydrotermálnych kremeňových žilách. Vznik bastnäsitu-(Ce) súvisí s tvorbou hydrotermálnych post-magmatických fluíd, ktoré sú priestorovo aj geneticky priamo viazané na gemerické granity.

Tabuľka 5 Vlnočty v infračervenom spektre bastnäsitu-(Ce) z Gemerskej Polomy a ich porovnanie s publikovanými údajmi pre tento minerál

Gemerská Poloma	1*	2*	3*	4*		
1435	1449	1486		1443		
1410	1417	1402	1419		v ₃ antisymetrická valenčná vibrácia (CO ₃) ²⁻	
		1310	1327			
1087	1085		1088	1086	v ₁ symetrická valenčná vibrácia (CO ₃) ²⁻	
867	867	863	865	868	y defermačná vibrácia (CO) ²⁻	
841	841	847	845			
730	729	722	729	728		
688	694				y deformačná vibrácia (CO) ²⁻	
669						
608	612					
405						

1* - Ploskaja Gora, Kola, Rusko (Chukanov 2014); 2* - Kanada (Frost, Dickfos 2007); 3* - Pakistan (Frost, Dickfos 2007); 4* - Kongo (Adler, Kerr 1963)

Poďakovanie

Milou povinnosťou autorov je poďakovať Mgr. Radkovi Škodovi PhD. z Přírodovědecké fakulty Masarykovy univerzity (Brno) za spoluprácu pri laboratornom výskume a Mgr. Pavlovi Škáchovi PhD. za mikrofotografiu bastnäsitu-(Ce). Predložená práca vznikla vďaka finančnej podpore Ministerstva kultury ČR v rámci inštitucionálneho financovania dlhodobého koncepčného rozvoja výskumnej organizácie Národní muzeum (DKRVO 2019-2023/1. II.b, 00023272).

Literatúra

- ADLER HH, KERR P F (1963) Infrared spectra, symmentry and structure relations of some carbonate minerals. Am Mineral 48(7-8): 839-853
- ANDERS E, GREVESSE N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53: 197-214
- BAČÍK P, DIANIŠKA I, ŠTEVKO M, SEČKÁR P (2011) Hnedý ihličkovitý dravit z mastencovo-magnezitového ložiska Gemerská Poloma (gemerikum, Slovensko). Bull mineral-petrolog Odd Nár Muz (Praha) 19(2): 164-170
- BAJANÍK Š, IVANIČKA J, MELLO J, PRISTAŠ J, REICHWALDER P, SNOPKO L, VOZÁR J, VOZÁROVÁ A (1984) Geologická mapa Slovenského rudohoria, východná časť 1:50 000. ŠGÚDŠ, Bratislava
- BAU M, MÖLLER P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Miner Petrol 45: 231-246
- BREITER K, BROSKA I, UHER P (2015) Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia). Geol Carpath 66(1): 19-36
- BROSKA I, KUBIŠ M (2018) Accessory minerals and evolution of tin-bearing S-type granites in the western segment of the Gemeric Unit (Western Carpathians). Geol Carpath 59(5): 483-497
- BROSKA I, UHER P (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geol Carpath 52(2): 79-90
- BURNHAM CHW (1962) Lattice constant refinement. Carnegie Inst Washington Year Book 61: 132-135
- Čејка J, Sејкога J, Jebavá I, Xi Y, Couperthwaite SJ, FROST RL (2013) A Raman spectroscopic study of the basic carbonate mineral callaghanite Cu₂Mg₂(CO₃) (OH)₆·2H₂O. Spectrochim Acta A, Mol Biomol Spectrosc 108: 171-176
- DIANIŠKA I, BREITER K, BROSKA I, KUBIŠ M, MALACHOVSKÝ P (2002) First phosphorous-rich Nb-Ta-Sn-specialised granite from the Carpathians-Dlhá dolina valley granite pluton, Gemeric super-unit. Geol Carpath 53 Special Issue (CD ROM)
- DOLNIČEK Z, ULMANOVÁ J (2019): Mineralogická charakteristika dvou typů hydrotermálních žil s obsahem REE minerálů z lomu u Vrbčan (kutnohorské krystalinikum). Bull Mineral Petrolog 27(2): 331-345
- DONNAY G, DONNAY JDH (1953) The crystallography of bastnaesite, parisite, roentgenite, and synchisite. Am Mineral 38(11-12): 932-963
- FROST RL, DICKFOS MJ (2007) Raman spectroscopy of halogen-containing carbonates. J Raman Spectrosc 38: 1516-1522

- GRECULA P, KOBULSKÝ J, GAZDAČKO Ľ, NÉMETH Z, HRAŠKO Ľ, NOVOTNÝ L, MAGLAY J (2009) Geologická mapa Spišsko-gemerského rudohoria 1:50 000. ŠGÚDŠ, Bratislava
- CHUKANOV NV (2014) Infrared spectra of mineral species: extended library. Vol. 1. Springer Dordrecht
- KILÍK J (1997) Geologická charakteristika mastencového ložiska Gemerská Poloma-Dlhá dolina. Acta Montan Slovaca 2(1): 71-80
- KILÍK J, BACHŇÁK M, MIHALÍK F, STUPÁK J, PALCSO A (1995) Záverečná správa a výpočet zásob úlohy Gemerská Poloma, mastenec, VP. Stav k 31.3.1995. MS, archív ŠGÚDŠ-Geofond, Bratislava, 214, 79885
- KUBIŠ M, BROSKA I (2010) The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir. J Geosci 55(2): 131-148
- LEE SG, LEE DH, KIM Y, CHAE BG, KIM WY, WOO NCH (2003) Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture – filling calcite. Appl Geoch 18: 135-143
- LIBOWITZKY E (1999) Correlation of O-H stretching frequencies and O-H×××O hydrogen bond lengths in minerals. Monat Chem 130(8): 1047-1059
- MALACHOVSKÝ P, DIANIŠKA I, MATULA I (1983) Záverečná správa, SGR-vysokotermálna mineralizácia - VP, Sn, W, Mo rudy. Stav k 18.8.1983. MS, archív ŠGÚDŠ-Geofond, Bratislava, 248, 56500
- MALACHOVSKÝ P, DIANIŠKA I, VARGA I (1992) Gemerská Poloma, Sn - záverečná správa, stav k 30.11.1990. MS, archív ŠGÚDŠ-Geofond, Bratislava, 187, 78404
- McLENNAN SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral 21: 169-200
- MICHIBA K, MIYAWAKI R, MINAKAWA T, TERADA Y, NAKAI I, MAT-SUBARA S (2013) Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan. J Mineral Petrolog Sci 108(6): 326-334.
- NAKAMOTO K (2009) Infrared and Raman spectra of inorganic and coordination compounds Part A: Theory and applications in inorganic chemistry. John Wiley and Sons, Hoboken, New Jersey
- NI Y, HUGHES JM, MARIANO AN (1993) The atomic arrangement of bastnäsite-(Ce), Ce(CO₃)F, and structural elements of synchysite-(Ce), röntgenite-(Ce), and parisite-(Ce). Am Mineral 78(3-4): 415-418
- OFTEDAL I (1931) Zur Kristallstruktur von Bastnäsit (Ce,La--)FCO₃. Z Kristallogr 78: 462-469
- ONDREJKA M, UHER P, PRŠEK J, OZDÍN D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: Composition and substitutions in the (REE,Y)XO₄ system (X = P, As, Si, Nb, S). Lithos 95: 116-129
- ONDREJKA M, UHER P, PUTIŠ M, BROSKA I, BAČÍK P, KONEČNÝ P, SCHMIEDT I (2012) Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos 142-143: 345-255
- ONDREJKA M, PUTIŠ M, UHER P, SCHMIEDT I, PUKANČÍK L, KO-NEČNÝ P (2016) Fluid-driven destabilization of REE-bearing accessory minerals in the granitic orthogneisses of North Veporic basement (Western Carpathians, Slovakia). Miner Petrol 110(5): 561-580

- ONDRUŠ P (1993) ZDS A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enchede
- PETRASOVÁ K, FARYAD SW, JEŘÁBEK P, ŽÁČKOVÁ E (2007) Origin and metamorphic evolution of magnesite-talc and adjacent rocks near Gemerská Poloma, Slovak Republic. J Geosci 52(1-2): 125-132
- POLLER U, UHER P, BROSKA I, PLAŠIENKA D, JANÁK M (2002) First Permian-Early Triassic zircon ages for tin-bearing granites from the Gemeric Unit (Western Carpathians, Slovakia): connection to the post-collisional extension of the Variscan orogen and S-type granite magmatism. Terra Nova 14: 41-48.
- POUCHOU JL, PICHOIR F (1985) "PAP" (φpZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106
- ŠTEVKO M, SEJKORA J, UHER P, CÁMARA F, ŠKODA R, VACULO-VIČ T (2018) Fluorarrojadite-(BaNa), BaNa₄CaFe₁₃ Al(PO₄)₁₁(PO₃OH)F₂, a new member of the arrojadite group from Gemerská Poloma, Slovakia. Mineral Mag 82(4): 863-876
- ŠTEVKO M, UHER P, SEJKORA J, MALÍKOVÁ R, ŠKODA R, VA-CULOVIČ T (2015) Phosphate minerals from the hydrothermal quartz veins in specialized S-type granites, Gemerská Poloma (Western Carpathians, Slovakia). J Geosci 60(4): 237-249
- UHER P (1994) REE minerály v granitoch upohlavského typu (pieninské bradlové pásmo). Miner Slov Geovestník 26(5): 10

- UHER P, BROSKA I (1996) Post-orogenic Permian granitic rocks in the Western Carpathian-Pannonian area: geochemistry, mineralogy and evolution. Geol Carpath 47(5): 311-321
- UHER P, MALACHOVSKÝ P, BAČÍK P, CHUDÍK P, ŠTEVKO M (2009) Polykras-(Y), uranopolykras a Ti-Nb-Ta-Fe minerál v kremenných žilách a exokontaktných zónach granitov gemerika, Slovenské rudohorie. Bull mineral -petrolog Odd Nár Muz (Praha) 17(1): 14-24
- UHER P, MALACHOVSKÝ P, ONDREJKA M, PRŠEK J (2010) Zr -REE-Nb mineralization in metatrachydacites of the Rakovec group (Gemeric Superunit, Western Carpathians, Slovakia): A product of interaction between host-rock and F-, CO₂-rich fluids. Z geol Wiss 38(2-3): 167-179
- UHER P, ONDREJKA M, BAČÍK P, BROSKA I, KONEČNÝ P (2015) Britholite, monazite, REE carbonates, and calcite: Products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia. Lithos 236-237: 221-225
- YANG H, DEMBOWSKI RF, CONRAD PG, DOWNS RT (2008) Crystal structure and Raman spectrum of hydroxyl-bastnasite-(Ce), CeCO₃(OH). Am Mineral 93(4): 698-701
- YVON K, JEITSCHKO W, PARTHÉ E (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J Appl Cryst 10: 73-74