PŮVODNÍ PRÁCE/ORIGINAL PAPER

Výzkum archeologických artefaktů z Kaňku u Kutné Hory

Research of archaeological artefacts from Kaňk near Kutná Hora

Blanka Šreinová¹⁾*, Jana Králová²⁾, Ilja Knésl³⁾, Jana Ulmanová¹⁾, Zdeněk Dolníček¹⁾ a Vladimír Šrein³⁾

¹⁾Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9 - Horní Počernice; *e-mail: blanka_sreinova@nm.cz
²⁾České muzeum stříbra, p. o., Barborská 28, 284 01 Kutná Hora
³⁾Česká geologická služba, Klárov 131/3, 118 21 Praha 1

ŠREINOVÁ B, KRÁLOVÁ J, KNÉSL I, ULMANOVÁ J, DOLNÍČEK Z, ŠREIN V (2019) Výzkum archeologických artefaktů z Kaňku u Kutné Hory. Bull Mineral Petrolog 27(2): 383-393 ISSN 2570-7337

Abstract

In area near top of hill Kaňk (northern from town Kutná Hora) were found archaeological artifacts. The research found that it is a collection of smithery slags and soils affected by mining. Individual slags have similar phase composition, they contain fayalite, wüstite, glass and pure iron, some slags also contain magnetite. They are evidence of the presence of a forge near the archaeologically confirmed mining equipment driven by horses, the so-called trejv, from the late 15th century.

Key words: smithery slags, soils, ore veins, medieval mining, hill Kaňk Obdrženo: 22. 8. 2019; přijato: 8. 11. 2019

Úvod

Oblast v. od vrcholu Kaňk (v. od stejnojmenné obce a s. od Kutné Hory) (obr. 1) se zejména v souvislosti se vznikem dvou propadlin označovaných P1 (starší) a P2 (mladší) stala středem zvýšeného zájmu odborníků různého vědeckého zaměření. Vznik prvé propadliny (1969) s následnými zálomy okrajů inicioval geologický (Pauliš, Mikuš 1998) a montanistický výzkum včetně dokumentace starých důlních děl (Svoboda 1998). Vzápětí ná-

sledoval i záchranný archeologický výzkum na plošině v těsné blízkosti východního okraje propadliny, a to nejprve předpokládaného a poté i doloženého šachetního zařízení poháněného koňmi, tzv. trejvu (Tomášek 1999). V propadlině a v jejím okolí bylo vymapováno několik šachet, avšak nebylo v možnostech stávajícího výzkumu doložit, ke které z nich trejv patřil. Stáří trejvu bylo, díky relativně spoře nalezené keramice v místě objevu těžního zařízení, možno přiřadit do konce 15. století. Zároveň byly nalezeny i doklady osídlení vrchu Kaňk, které souviselo s hornickou činností ve středověku a v raném novověku a s ukončením těžby zaniklo. Tyto poznatky potvrdil i výzkum v období let 2000 až 2010, kdy se postupně začala s. od propadliny P1 vyvíjet propadlina P2. V ní bylo nalezeno velké množství střepů, z nichž nejstarší byly patrně již ze 14. století, těch bylo malé množství, avšak hojné bylo 15. století a mladší, nejmladší byly nejspíše ze 17. století. V souvislosti s archeologickým průzkumem, v rámci kterého byla v prostoru mezi propadlinami odebrána i sporá keramika, byly pomocí detektoru kovu nalezeny strusky a magnetická zemina (obr. 2; vzorky odebrala autorka JK). Vzhledem k vzácnosti nálezu bylo rozhodnuto o provedení detailního výzkumu původu těchto archeologických artefaktů, které by mohly být dokladem přítomnosti kovárny

Obr. 1 Mapa oblasti s vyznačením místa odběru vzorků - vyznačeno červeným obdélníkem. Upraveno podle www.mapy.cz.

v místě nálezu. Do výzkumu byla pro porovnání zahrnuta i narezlá zemina z archeologické situace u Třešňovky jv. od studované lokality (tab. 1).

Geologie

Oblast Kaňku je součástí kutnohorského krystalinika, které je zde tvořeno především provrásněnými pararulami až migmatity proterozoického až paleozoického stáří (obr. 3). Na krystaliniku jsou diskordantně uložené mořské křídové sedimenty, kvartérní spraše a sprašové hlíny. Sulfidické zrudnění je vázáno na subvertikální alterované zóny v migmatitech. V propadlině P1 jsou ve východní stěně na rozhraní křídy a krystalinika odhaleny pozůstatky středověkého systému chodeb, šachtic a dobývek, které sledovaly mineralizované zóny. Představují jednu z nejstarších fází dolování stříbrných rud na turkaňském žilném pásmu v Kutné Hoře (Pauliš, Mikuš 1998).

Metodika

Strusky byly studovány makroskopicky a pod binokulární lupou. U všech vzorků byla změřena magnetická susceptibilita v jednotkách $\kappa \cdot 10^{-3}$ [SI] analyzátorem magnetické susceptibility KT-5. Ze šesti vzorků strusky byly odebrány odštěpky na zhotovení nábrusu pro mikroskopické studium i pro chemickou analýzu. Chemismus struskových fází byl studován pomocí elektronové mikrosondy Cameca SX-100 na pracovišti Národního muzea v Praze. Kvantitativní analýzy zhotovené ve vlnově disperzním módu byly provedeny za následujících analytických podmínek: urychlovací napětí 15 kV, proud elektronovým svazkem 20 nA pro ryzí Fe a 10 nA pro ostatní fáze a

Obr. 2 Místo odběru vzorků v situační mapce propadlin na Kaňku u Kutné Hory. Upraveno podle Bartoše (2004).

Tabulka 1 Přehled studovaných artefaktů a jejich magnetická susceptibilita (10-3 SI)

označení	makroskopický popis/ mikroskopický popis (nábrusu)	magnetická susceptibilita
	narezavělá jemně porézní struska, silně magnetická/	
KNK1	sklovina s kuličkami železa a zonálním <i>"limonitu"</i> s koncentrickou stavbou, kontaminace hlínou, sklovina modrá	165 - 203
KNK2	jedna strana strusky je porézní, jedna hladší krápníčková, na rezavém místě silně magnetická/	30 - 60
	fayalitová struska s pravidelnými dendrity wüstitu, na okrajích "limonit"	
KNK3	lehká, porézní, na jedné straně hrubý povrch, jedna strana hladká sklovitá/	2.2
	fayalitová struska s nepravidelnými dendrity wůstitu, modrá sklovina, <i>"limonit"</i>	
KNK4	sedá krápničková struska/	0.59
	svetiy vejirovity fayalit	
KNK5	nannedia narezavela struska, porezni a z jedne strany krapnickovita/	11.3
KNK6	sklovita "duhova" poležni struška/	1.32
	ilsty layalitu a kulicky zeleza	162 206
		1.03 - 2.00
KNK8	ienka, porezni, krapnikovita, modrave nasedla struška	3.45
KNK9	lehká, porézní, nemagnetická, sklovitá namodralá struska	0.46
KNK10	lehká, sklovitá struska, vzhled sklovitý "glazovaný"	0.38
KNK11	větší struska, černá porézní, fayalitová	1.11 - 1.17; 1.35 - 1.89
KNK12	zemina s kuličkami Fe, jemný podíl tmavý	4.15 - 4.48
KNK13	zemina, černý prach	8.65 - 9.84
KNK14	Třešňovka, prášek šedý, spraš hrudkovitá	0.11 - 0.15
KNK15	Třešňovka, prášek rezavý jemný, hlína a spraš	0.05 - 0.09
KNK16	fayalitová struska	3.9; 5.54; 11.4

průměr elektronového svazku 0.7 - 2 µm. V leucitu byly měřeny obsahy Al, Ba, Ca, Cs, Cu, F, Fe, Mg, Mn, N, K, Na, P, Pb, Rb, Si, Sr a Zn, ve sklovinách obsahy Al, Ba, Ca, Cl, Co, Cr, Cs, Cu, F, Fe, K, Mg, Mn, N, Na, Ni, P, Pb, Sb, Si, Ti, V a Zn, ve fayalitu, wüstitu a Sn-lemu obsahy Al, Ba, Ca, Cl, Cr, F, Fe, K, Mg, Mn, N, Na, Ni, P, Pb, Rb, Si, Sn, Sr, Ti, V, Zn a Zr a v magnetitu a kovovém Fe obsahy Al, Ca, Cr, Fe, Mg, Mn, Ni, P, Si, Ti, V, Zn a Zr. Při analýzách byly použity následující standardy a analytické čáry: albit (NaK α), almandin (AlK α , FeK α), apatit (PK α), baryt (BaL β), BN (NK α), celestin (SrL β), Cr₂O₃ (CrK α), Cs-sklo (CsL α), diopsid (MgK α), halit (ClK α), hematit, (FeK α) chalkopyrit (CuK α), LiF (FK α), Ni (NiK α), Rb-Ge-sklo (RbL α), rodonit (MnK α), sanidin (KK α , SiK α ,

Obr. 3 Geologická mapa okolí Kaňku u Kutné Hory. Upraveno podle www.geologicke-mapy.cz.

Obr. 4 Strusky vybrané k výzkumu (označení viz tab. 1). Foto B. Šreinová.

Obr. 5 Fayalitová struska (č. 11) s tence tabulkovitými krystaly fayalitu. Vzorek velikosti cca 4 × 5 cm. Foto B. Šreinová.

Tabulka 2a Chemické složení strusek (hodnoty v ppm)

AlK α), Sn (SnL α), TiO₂ (TiK α), V (VK α), vanadinit (PbM α), wollastonit (CaK α , SiK α), zinkit (ZnK α) a zirkon (ZrL α). Získaná data byla přepočtena na obsahy prvků (ryzí Fe) nebo oxidů (ostatní měřené fáze) vyjádřené v hmotnostních procentech s použitím standardní PAP korekce (Pouchou, Pichoir 1985). Obsahy měřených prvků, které nejsou uvedeny v tabulkách, byly pod mezí stanovitelnosti.

Dále byly vzorky analyzovány i rentgenfluorescenční metodou PRFA na spektrometru Alpha 4000 (Innov-X Systems, Woburn, USA) v laboratoři ČGS, analytik Ilja Knésl. Měření PRFA spektrometrem byla prováděna za následujících podmínek: doba měření čtyři minuty v analytickém módu zeminy. V průběhu měření je hlavice spektrometru pevně fixována v měřicím nástavci. Před vlastním měřením je přístroj standardizován vnějším kovovým standardem dodaným výrobcem.

ozna	čení	KNK1 KNK2		KNK2 KNK3		KNK5	KNK6	KNK7	KNK8
G50	Mg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28 200</td><td>41 020</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>28 200</td><td>41 020</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>28 200</td><td>41 020</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>28 200</td><td>41 020</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	28 200	41 020	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
G50	Al	18 310	40 180	40 750	45 210	40 410	33 840	50 300	40 640
G50	Si	48 190	132 800	266 700	181 600	116 200	128 700	234 000	200 300
G50	Ρ	<lod< td=""><td>3 890</td><td><lod< td=""><td>1 990</td><td>7 230</td><td>3 290</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	3 890	<lod< td=""><td>1 990</td><td>7 230</td><td>3 290</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	1 990	7 230	3 290	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
G50	S	<lod< td=""><td>377</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	377	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
LM	Κ	13 220	18 560	43 880	35 660	18 450	9 100	27 450	33 780
G50	Са	12 330	12 320	86 600	36 740	15 230	28 700	55 710	46 540
LM	Ti	2 310	3 610	3 560	5 310	2 690	4 800	4 080	4 750
LM	V	<lod< td=""><td><lod< td=""><td>79</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>36</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>79</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>36</td></lod<></td></lod<></td></lod<></td></lod<>	79	<lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>36</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>63</td><td>36</td></lod<></td></lod<>	<lod< td=""><td>63</td><td>36</td></lod<>	63	36
LM	Mn	<lod< td=""><td><lod< td=""><td>1 410</td><td>1 400</td><td><lod< td=""><td><lod< td=""><td>1 100</td><td>833</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1 410</td><td>1 400</td><td><lod< td=""><td><lod< td=""><td>1 100</td><td>833</td></lod<></td></lod<></td></lod<>	1 410	1 400	<lod< td=""><td><lod< td=""><td>1 100</td><td>833</td></lod<></td></lod<>	<lod< td=""><td>1 100</td><td>833</td></lod<>	1 100	833
G50	Fe	401 000	392 800	64 750	241 200	462 800	411 600	57 550	156 800
LM	Ni	109	<lod< td=""><td>72</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>116</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	72	<lod< td=""><td><lod< td=""><td><lod< td=""><td>116</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>116</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>116</td><td><lod< td=""></lod<></td></lod<>	116	<lod< td=""></lod<>
LM	Cu	<lod< td=""><td>304</td><td>35</td><td><lod< td=""><td>359</td><td><lod< td=""><td>62</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	304	35	<lod< td=""><td>359</td><td><lod< td=""><td>62</td><td><lod< td=""></lod<></td></lod<></td></lod<>	359	<lod< td=""><td>62</td><td><lod< td=""></lod<></td></lod<>	62	<lod< td=""></lod<>
LM	Zn	2 740	1 350	261	2 030	1 900	352	956	457
LM	As	<lod< td=""><td>1 000</td><td>211</td><td>797</td><td>815</td><td>280</td><td>184</td><td>216</td></lod<>	1 000	211	797	815	280	184	216
LM	Se	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>73</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>73</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>73</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>73</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	73	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
LM	Rb	52	85	144	118	116	71	128	115
LM	Sr	105	90	261	175	84	108	231	195
LM	Y	38	38	35	29	44	38	35	29
LM	Zr	229	249	603	446	218	262	598	484
LM	Nb	13.0	16.0	17.4	17.0	16.0	11.0	22.5	20.0
LM	Мо	16	12	<lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	25	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
LM	Ag	<lod< td=""><td>10.0</td><td>7.2</td><td><lod< td=""><td>11.0</td><td>7.0</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	10.0	7.2	<lod< td=""><td>11.0</td><td>7.0</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	11.0	7.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
G50	Cd	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
LM	Sn	56	109	23	96	438	122	23	41
LM	Sb	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
G50	Ва	<lod< td=""><td>46</td><td>444</td><td>141</td><td>43</td><td>42</td><td>417</td><td>205</td></lod<>	46	444	141	43	42	417	205
LM	Ce	<lod< td=""><td><lod< td=""><td>79</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>99</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>79</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>99</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	79	<lod< td=""><td><lod< td=""><td><lod< td=""><td>99</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>99</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>99</td><td><lod< td=""></lod<></td></lod<>	99	<lod< td=""></lod<>
LM	Hf	<lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td>13</td></lod<></td></lod<></td></lod<></td></lod<>	13	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td>13</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td><td>13</td></lod<></td></lod<>	<lod< td=""><td>16</td><td>13</td></lod<>	16	13
G50	Hg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>50</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	50	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
LM	Pb	142	342	42	58	589	316	39	47
LM	Bi	118	150	<lod< td=""><td>22</td><td>326</td><td>198</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	22	326	198	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
LM	Th	69	62	18	46	84	60	17	22
LM	U	58	52	19	23	59	63	<lod< td=""><td>17</td></lod<>	17
Obsah	y CI, C	Cr, Co, La, Pr,	Nd, Ta a W b	oyly stanoven	y pod mezí a	letekce			

Charakteristika studovaných vzorků

Ke studiu bylo vybráno 16 vzorků (v tab. 1 označené KNK1 až KNK16), z toho je 12 strusek a 4 vzorky sypké zeminy (2 vzorky z místa nálezu strusek a 2 srovnávací vzorky z polohy Třešňovka). U prvních šesti vzorků byl zhotoven nábrus pro mikroskopický a chemický výzkum.

Strusky mají podobný vzhled (obr. 4 a 5) a i jejich fázové složení je obdobné. Makroskopicky jsou většinou nepravidelné, porézní, sklovité, povrch je hrubý až krápníčkovitý, jsou narezavělé, ve sklovitých částech mají modravý, občas až "duhový" odstín. Nejčastěji se jedná o fayalitové strusky s různým obsahem skla, případně s podílem *limonitu* a kuliček kovového Fe. I když mají strusky makroskopicky obdobný vzhled, jejich magnetická susceptibilita se u jednotlivých vzorků pohybuje v poměrně širokém rozpětí hodnot (0.38 - 203 · 10⁻³ SI, tab. 1).

Magnetická zemina, odebraná z místa předpokládané kovárny, kde byly nalezeny i studované strusky, je černá, velmi jemně zrnitá, prachovitá. Magnetická susceptibilita se pohybuje v rozmezí 4.15 - 9.84 · 10⁻³ SI. Zemina odebraná jako srovnávací z "Třešňovky" je šedá a rezavá, velmi jemnozrnná, prachovitá s podílem spraše, magnetická susceptibilita je výrazně nižší, než u předchozí zeminy z Kaňku, pohybuje se v rozmezí 0.05 - 0.15 · 10⁻³ SI (tab. 1).

Chemismus strusek a jejich fázové složení

Chemismus strusek i zemin byl stanoven rentgenfluorescenční metodou (tab. 2a,b). Strusky jsou relativně bohaté železem, přičemž jeho obsah kolísá u jednotlivých strusek v rozmezí hodnot 50 000 - 460 000 ppm (řádově) v nepřímé úměře s obsahem Si, Ca a Al, případně i s obsahem K. Ten se uplatňuje v menší míře a jeho množství zřejmě souvisí s množstvím popela vstupujícím do taveniny - skloviny, přítomen je i v krystalech leucitu. Obsah Zn kopíruje zvýšené obsahy Fe, avšak je řádově poměrně nízký (80 - 2 740 ppm) a to zejména ve srovnání s obsahem Zn ve struskách z královských hutí (Manasse, Mellini 2002). Obsah Ti je jak pro strusky, tak pro zeminu vyrovnaný (řádově v rozmezí 3 000 - 5 000 ppm). Ostatní prvky jsou na hranici detekovatelnosti. Magnetická zemina ve srovnání s narezavělou práškovitou zeminou z Třešňovky vykazuje zvýšený obsah Fe (řádově 115 000 - 380 000 ppm oproti 33 000 - 40 000 ppm), Ca (řádově 22 000 ppm oproti 8 000 - 11 000 ppm) a Zn (řádově 2 500 - 4 000 oproti 1 600 ppm). Naopak práškovitá zemina z Třešňovky obsahuje výrazně vyšší podíl Ag (řádově 70 - 150 ppm oproti 9 - 12 ppm) a As (řádově 4 300 - 5 750 ppm oproti 800 - 1 170 ppm), což dokládá pravděpodobné úpravárenské zařízení.

Tabulka 2b Chemické složení strusek - pokračování

ozna	čení	KNK9	KNK10	KNK11	KNK12	KNK13	KNK14	KNK15	KNK16		
G50	Mg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17 210</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17 210</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17 210</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17 210</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17 210</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>17 210</td><td><lod< td=""></lod<></td></lod<>	17 210	<lod< td=""></lod<>		
G50	Al	46 060	46 040	47 020	55 470	41 760	56 840	51 220	45 480		
G50	Si	271 800	315 700	119 000	224 700	218 100	211 400	183 900	152 200		
G50	Ρ	<lod< td=""><td><lod< td=""><td>2 980</td><td><lod< td=""><td>657</td><td><lod< td=""><td><lod< td=""><td>7 260</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2 980</td><td><lod< td=""><td>657</td><td><lod< td=""><td><lod< td=""><td>7 260</td></lod<></td></lod<></td></lod<></td></lod<>	2 980	<lod< td=""><td>657</td><td><lod< td=""><td><lod< td=""><td>7 260</td></lod<></td></lod<></td></lod<>	657	<lod< td=""><td><lod< td=""><td>7 260</td></lod<></td></lod<>	<lod< td=""><td>7 260</td></lod<>	7 260		
G50	S	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1 020</td><td>244</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1 020</td><td>244</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1 020</td><td>244</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1 020</td><td>244</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1 020</td><td>244</td></lod<></td></lod<>	<lod< td=""><td>1 020</td><td>244</td></lod<>	1 020	244		
LM	Κ	47 400	44 910	20 100	28 260	19 800	31 100	31 040	24 160		
G50	Са	59 150	89 340	23 640	22 250	22 250	10 910	7 720	37 470		
LM	Ti	3 200	3 660	4 000	5 270	4 000	3 450	2 550	7 540		
LM	V	68	72	<lod< td=""><td><lod< td=""><td>49</td><td>43</td><td>24</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>49</td><td>43</td><td>24</td><td><lod< td=""></lod<></td></lod<>	49	43	24	<lod< td=""></lod<>		
LM	Mn	1 530	1 300	241	451	983	3 370	5 850	198		
G50	Fe	52 300	56 200	384 800	383 800	115 800	39 900	33 650	305 800		
LM	Ni	70	308	<lod< td=""><td>97</td><td>96</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	97	96	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
LM	Cu	38	35	<lod< td=""><td>295</td><td>227</td><td>140</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	295	227	140	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
LM	Zn	145	79	652	3 980	2 470	1 610	1 560	544		
LM	As	47	29.5	896	1 170	797	5 760	4 320	628		
LM	Se	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
LM	Rb	163	173	85	100	105	237	261	65		
LM	Sr	206	283	99	128	109	66	21.7	143		
LM	Y	19.6	33.0	35.0	48.0	30.0	32.0	17.4	25.0		
LM	Zr	421	614	258	426	455	275	141	429		
LM	Nb	19.3	25.0	16.0	13.0	17.0	13.9	7.8	13.0		
LM	Мо	<lod< td=""><td><lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	28	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
LM	Ag	<lod< td=""><td><lod< td=""><td>12.0</td><td>12.0</td><td>9.1</td><td>147</td><td>68</td><td>10.0</td></lod<></td></lod<>	<lod< td=""><td>12.0</td><td>12.0</td><td>9.1</td><td>147</td><td>68</td><td>10.0</td></lod<>	12.0	12.0	9.1	147	68	10.0		
G50	Cd	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>20.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	20.9	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
LM	Sn	30	25	59	241	166	149	93	84		
LM	Sb	<lod< td=""><td><lod< td=""><td><lod< td=""><td>34</td><td>28</td><td>184</td><td>137</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>34</td><td>28</td><td>184</td><td>137</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>34</td><td>28</td><td>184</td><td>137</td><td><lod< td=""></lod<></td></lod<>	34	28	184	137	<lod< td=""></lod<>		
G50	Ва	670	486	50	<lod< td=""><td>179</td><td>134</td><td><lod< td=""><td>81</td></lod<></td></lod<>	179	134	<lod< td=""><td>81</td></lod<>	81		
LM	Ce	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>69</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>69</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>69</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	69	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
LM	Hf	15	15	<lod< td=""><td><lod< td=""><td>17</td><td>30</td><td>22</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>17</td><td>30</td><td>22</td><td><lod< td=""></lod<></td></lod<>	17	30	22	<lod< td=""></lod<>		
G50	Hg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
LM	Pb	9.5	5.2	234	441	485	736	438	163		
LM	Bi	<lod< td=""><td><lod< td=""><td>183</td><td>80</td><td><lod< td=""><td><lod< td=""><td>10</td><td>49</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>183</td><td>80</td><td><lod< td=""><td><lod< td=""><td>10</td><td>49</td></lod<></td></lod<></td></lod<>	183	80	<lod< td=""><td><lod< td=""><td>10</td><td>49</td></lod<></td></lod<>	<lod< td=""><td>10</td><td>49</td></lod<>	10	49		
LM	Th	12.0	16.0	62	65	29	19	16	36		
LM	U	<lod< td=""><td><lod< td=""><td>51</td><td>71</td><td>14</td><td>11</td><td>15</td><td>45</td></lod<></td></lod<>	<lod< td=""><td>51</td><td>71</td><td>14</td><td>11</td><td>15</td><td>45</td></lod<>	51	71	14	11	15	45		
Obsah	Obsahy Cl. Cr. Co. La. Pr. Nd. Ta a W byly stanoveny pod mezí detekce										

Obr. 6 BSE fotografie strusek z Kaňku. a - sklovina Fe-bohatá (světlá) a Fe chudá (tmavá) obsahuje dutiny (černé) a výplně limonitu (bílé), vzorek KNK1; b - sklovina Fe-bohatá (světlá) a Fe chudá (tmavá) s křemenem (černý) a s natavenými živci (porézní). Světlé zrno uprostřed náleží fázi blízké stanninu s lemem stannátu železa, vzorek KNK1; c - kostrovité krystaly a shluky magnetitu (nejsvětlejší) mezi tabulkovitými porézními krystaly fayalitu (středně šedý) a jemnými dendrity wüstitu (světle šedý) v základní sklovité hmotě (tmavě šedá), vzorek KNK3; d - sklovitá část strusky se shluky kostrovitého až celistvého magnetitu (bílý) a jemnými pravoúhlými dendrity wüstitu (světle šedý). Černé jsou dutiny a nepravidelná zrna křemene, vzorek KNK3; e - dvě generace strusek rozdělené černými dutinami - skvrnitá sklovitá vlevo a fayalitová vpravo s protaženými krystaly fayalitu (nejsvětlejší) v základní hmotě, vzorek KNK4; f - struska tvořená krystaly fayalitu (světlý) v šedé sklovité základní hmotě s krystality mladšího fayalitu, vzorek KNK4; g - dvě generace fayalitu s limonitovým lemem (bílý) vpravo dole. Kostrovitý velký fayalit 1 v horní části obrázku, lištovité průřezy fayalitu 2 s inkluzemi železa (bílé). Oba typy fayalitu obklopují řetízkovitě uspořádaná zrna leucitu (tmavě šedá) a šedá mezerní hmota, vzorek KNK5; h - detail zrna fayalitu z předchozího obrázku s patrným zonálním vývojem – tmavší okraje bohatší forsteritovou složkou, centrální části mají fayalitem bohatší složení (světlejší), vzorek KNK5. BSE foto J. Ulmanová a Z. Dolníček.

←

Strusky mají obdobné fázové složení. Obsahují jemnozrnné a hrubozrnné dendrity a shluky dendritů wüstitu a lamelovité krystalky fayalitu, který se vyskytuje v několika generacích - starší ve formě větších vyrostlic, mladší jemně krystalický je v mezerní hmotě, podstatnou složkou strusek je sklo.

Struska označená jako KNK1 je oproti ostatním struskám silně magnetická (magnetická susceptibilita se pohybuje v rozmezí 165 - 203 · 10⁻³ SI). Struska je výrazně sklovitá, přičemž je mikroskopicky odlišitelná sklovina s vyšším, či nižším podílem Fe (obr. 6a,b). Dále obsahuje kuličky železa s *limonitem* s koncentrickou stavbou.

Zvýšenou magnetickou susceptibilitu (30 - 60 · 10⁻³ SI) má i fayalitová struska KNK2. Obsahuje vysoký podíl fayalitových tence tabulkovitých krystalů, pravidelné dendrity wüstitu a *limonit* (obr. 7a).

Relativně vyšší magnetickou susceptibilitu mají ještě strusky KNK5 (11.3 \cdot 10⁻³ SI), KNK8 (3.45 \cdot 10⁻³ SI) a KNK16 (3.9 - 11.4 \cdot 10⁻³ SI). Ve všech případech se opět jedná o lehkou porézní krápníkovitou fayalitovou strusku s *limonitem* (struska KNK5 je na obr. 6g,h).

Magnetická susceptibilita zbývajících strusek (KNK3, KNK4, KNK6, KNK7, KNK9 až KNK11) se pohybuje v rozmezí 0.38 - 2.2 · 10⁻³ SI. Vzhled a složení strusek je obdobné. Na fayalitové strusce označené KNK3 je nápadný kanálek kónického tvaru, na jehož povrchu jsou četné kulovité útvary podobné bublinám, kdy vnitřní strana krusty obsahuje milimetrové hypoparalelní srůsty tabulkovitých krystalů fayalitu černozelené barvy. Na čerstvém lomu této strusky se objevuje iridiscence tenké zvětrávací vrstvičky při povrchu změněné na limonit. Tato asociace se vyskytuje i ve větší protáhlé dutině celkového fragmentu. Idiomorfně omezené tabulky fayalitu čnějící do prostoru však nejeví známky přeměn povrchové vrstvičky. Na různých místech jsou relativně vzácně přitavené sférule s bílošedým povrchem sklovité fáze. Mikroskopicky jsou patrné kostrovité krystaly a shluky magnetitu mezi lištovitými porézními krystaly fayalitu a jemnými dendrity wüstitu v základní sklovité hmotě (obr. 6c,d). Obdobné složení mají i další výše zmíněné vzorky - jde o fayalitové strusky často s fayalitem různých generací, s dendrity wüstitu, s limonitem a některé i s magnetitem (KNK4 obr. 6e,f; KNK6 - obr. 7b). Zajímavá je struska s označením KNK11 (obr. 5), jejíž magnetická susceptibilita se pohybuje v rozmezí 1.11 - 1.89 · 10-3 SI. Skládá se ze dvou facií. Na spodní části úlomku je neporézní lamelovitá hmota fayalitového složení, na kterou nasedá zóna velkých dutin, do kterých vykrystalizovaly hypoparalelní srůsty tabulkovitých krystalů fayalitu. Srůsty těchto cca 1 mm širokých tenkých tabulek jsou až 1 x 1 cm velké. Na povrchu ploch jsou vidět vystupující řezy podle os a a b. Mají lesklý korodovaný povrch a vzájemně se prorůstají a kříží. Na čerstvém lomu mají metalický vzhled, ale žádné sulfidy ani kovy pozorovány nebyly. Spodní strana masivní části strusky obsahuje natavené horninové úlomky písčité frakce. Je v ní zatavený i fragment dřevěného uhlí,

Obr. 7 BSE fotografie strusek z Kaňku. a - struska tvořená tabulkovitým fayalitem (světle šedý) a pravoúhlými dendrity wüstitu (bílé), černé jsou dutiny, vzorek KNK2; b - velké kostrovité krystaly fayalitu 1 (světlý) jsou v základní tmavé sklovité hmotě prostoupené péřovitým fayalitem 2 (tmavý), černé jsou kulovité dutiny, vzorek KNK6. BSE foto J. Ulmanová a Z. Dolníček.

který je ovšem silně limonitizován.

Práškovitá zemina (KNK12 a KNK13) z prostředí nálezů strusek obsahuje množství magnetických sférulí a drobných částeček kovu, které se dají dobře oddělit magnetem. Další složkou zeminy je wüstit. Práškové vzorky z lokality Kutná Hora - Třešňovka (KNK14 a KNK15) představují sypký prachovitý materiál bez obsahu magnetických sférulí a drobných částeček kovu.

Tabulka 3 Chemické složení železa (hm. %)

	1	2
vzorek	KNK5	KNK6
Al	0.04	0.09
Mg	0.09	0.00
Ca	0.18	0.00
Fe	99.03	98.07
Total	99.34	98.17

Tabulka 4 Chemické složení Sn-bohatého lemu kolem fáze blízké staninu (hm. %)

	3	4
vzorek	KNK1	KNK1
SO ₃	0.50	4.81
P ₂ O ₅	0.14	0.27
SnO,	42.26	42.06
SiO	7.41	7.15
Al ₂ O ₃	1.00	0.69
MgO	0.13	0.00
CaO	0.67	0.56
FeO	33.61	31.89
ZnO	1.23	1.28
CuO	0.49	2.40
Total	87.44	91.11

Tabulka 5 Chemické složení magnetitu (hm. %) a koeficienty empirického vzorce přepočítané na základě 4 atomů kvslíku a 3 kationtů

	5	6	7	8
vzorek	KNK3	KNK3	KNK3	KNK3
TiO ₂	0.25	0.14	0.15	0.18
SiO ₂	0.43	0.00	0.00	0.06
Al_2O_3	1.63	1.40	1.60	1.45
MgO	0.54	0.35	1.79	1.81
CaO	0.05	0.04	0.15	0.19
MnO	0.00	0.00	0.11	0.17
FeOtot	90.25	90.97	87.72	88.50
NiO	0.04	0.04	0.07	0.05
Total	93.19	92.94	91.60	92.41
Ti ⁴⁺	0.007	0.004	0.004	0.005
Si ⁴⁺	0.016	0.000	0.000	0.002
Al ³⁺	0.073	0.063	0.072	0.065
Fe ³⁺	1.881	1.928	1.919	1.921
Mg ²⁺	0.031	0.020	0.102	0.102
Ca ²⁺	0.002	0.002	0.006	0.008
Mn ²⁺	0.000	0.000	0.004	0.005
Fe ²⁺	0.989	0.982	0.890	0.889
Ni ²⁺	0.001	0.001	0.002	0.002
Catsum	3.000	3.000	3.000	3.000

Charakteristika struskových fází

Vytavené železo se vyskytuje jen v malých kuličkách (sférulích) v železem bohatém skle nebo strusce. Chemicky se jedná o téměř čisté Fe bez obsahu významného množství dalších příměsí (tab. 3, obr. 6a,b,g).

Staninu podobná fáze byla nalezena v několikamikrometrové inkluzi a obsahuje vyšší podíl zinku. Navětráním této fáze vznikl lem stannátu Fe, který se liší od natanitu i jeanbandyitu a obsahuje zvýšený podíl síry (0.5 a 4.8 hm. % SO₂) a křemíku (7.2 a 7.4 hm. % SiO₂) (tab. 4, obr. 6b).

Magnetit se vyskytuje ve formě zrn, která jsou tvořena kostrovitými krystaly a případně skelety krystalů. Z příměsí obsahuje malé množství Al (1.4 - 1.6 hm. % Al₂O₃) a Mg (0.4 - 1.8 hm. % MgO) (tab. 5, obr. 6c,d).

Tabulka 6 Chemické složení leucitu (hm. %) a koeficienty empirického vzorce přepočtené na základě 6 atomů kyslíku

	9	10
vzorek	KNK5	KNK5
P_2O_5	0.00	0.05
SiO2	57.47	56.69
Al ₂ O ₃	22.49	22.12
MgO	0.12	0.21
BaO	0.14	0.08
FeO	1.16	1.11
Na ₂ O	0.74	0.29
K ₂ O	18.12	18.70
Total	100.24	99.25
P ⁵⁺	0.000	0.002
Si ⁴⁺	2.050	2.048
Al ³⁺	0.946	0.942
Mg ²⁺	0.006	0.011
Ba ²⁺	0.002	0.001
Fe ²⁺	0.035	0.034
Na⁺	0.051	0.020
K ⁺	0.825	0.862
Catsum	3.915	3.920

Tabulka 7 Chemické složení wüstitu (hm. %) a koeficienty empirického vzorce přepočtené na 1 atom kvslíku

	11	12
vzorek	KNK2	KNK2
TiO ₂	0.31	0.33
$Al_2 \bar{O}_3$	0.75	0.71
Cr ₂ O ₃	0.13	0.14
MgO	0.26	0.27
CaO	0.05	0.05
FeO	97.95	97.99
Total	99.45	99.49
Ti ⁴⁺	0.003	0.003
Al ³⁺	0.010	0.010
Cr ³⁺	0.001	0.001
Mg ²⁺	0.005	0.005
Ca ²⁺	0.001	0.001
Fe ²⁺	0.972	0.972
Catsum	0.991	0.991

Tabulka 8	a Chemic	ké slože	ní fayalitu	ı (hm. %)	a koefici	ienty emp	irického v	zorce př	epočítané	é na 4 ato	omy kyslí	ku
	13	14	15	16	17	18	19	20	21	22	23	24
vzorek	KNK2	KNK2	KNK3	KNK3	KNK4	KNK4	KNK4	KNK5	KNK5	KNK5	KNK5	KNK5
P_2O_5	0.15	0.05	0.04	0.13	0.00	0.11	0.05	0.45	0.18	0.00	0.19	0.36
SiO2	28.61	28.39	29.37	29.14	30.80	30.62	30.13	30.06	30.31	30.46	30.59	32.37
TiO ₂	0.07	0.11	0.05	0.00	0.00	0.09	0.07	0.19	0.05	0.04	0.00	0.10
ZrO ₂	0.00	0.00	0.00	0.00	0.42	0.29	0.00	0.48	0.07	0.11	0.18	0.13
Al_2O_3	0.00	2.29	0.00	0.14	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.16
MgO	0.66	0.39	2.10	2.34	3.05	2.48	3.49	2.23	3.60	3.48	4.10	5.47
CaO	2.78	3.00	1.27	1.44	1.51	1.79	1.42	5.87	1.38	2.61	1.22	2.49
SrO	0.00	0.00	0.00	0.11	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.09	0.08	0.10	0.09	0.38	0.37	0.38	0.37	0.30	0.60	0.29	0.61
FeO	66.32	64.32	66.57	65.52	63.94	64.56	63.29	58.41	63.45	61.85	63.38	58.94
Na ₂ O	0.09	0.36	0.00	0.11	0.00	0.00	0.00	0.05	0.42	0.19	0.29	0.00
K ₂ O	0.05	0.72	0.00	0.03	0.03	0.04	0.03	0.38	0.00	0.03	0.04	0.11
Total	99.09	99.81	99.63	99.11	100.40	100.40	99.02	98.62	99.80	99.48	100.40	100.80
P ⁵⁺	0.004	0.001	0.001	0.004	0.000	0.003	0.001	0.013	0.005	0.000	0.005	0.010
Si ⁴⁺	0.976	0.950	0.986	0.980	1.009	1.005	1.000	0.995	0.996	1.003	0.997	1.022
Ti ⁴⁺	0.002	0.003	0.001	0.000	0.000	0.002	0.002	0.005	0.001	0.001	0.000	0.002
Zr ⁴⁺	0.000	0.000	0.000	0.000	0.007	0.005	0.000	0.008	0.001	0.002	0.003	0.002
Al ³⁺	0.000	0.090	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006
Mg ²⁺	0.034	0.019	0.105	0.117	0.149	0.121	0.173	0.110	0.176	0.171	0.199	0.257
Ca ²⁺	0.100	0.106	0.045	0.051	0.052	0.062	0.050	0.206	0.048	0.091	0.042	0.083
Sr ²⁺	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn ²⁺	0.003	0.002	0.003	0.003	0.011	0.010	0.011	0.010	0.008	0.017	0.008	0.016
Fe ²⁺	1.892	1.800	1.869	1.844	1.752	1.773	1.757	1.617	1.744	1.703	1.727	1.556
Na⁺	0.006	0.023	0.000	0.007	0.000	0.000	0.000	0.003	0.027	0.012	0.018	0.000
K⁺	0.002	0.031	0.000	0.001	0.001	0.002	0.001	0.016	0.000	0.001	0.002	0.004
Catsum	3.019	3.027	3.011	3.015	2.984	2.984	2.996	2.983	3.007	3.001	3.002	2.959

Tabulka	8h	Chemické	složení	favalitu -	nokračování
labura	UN.	Onennere	31020111	iavaniu -	Domacovani

			,	· · · ·									
	2	5 20	6 27	28	29	3 3	0 3	1 3:	2 33	3 34	4 38	5 36	3 37
vzorek	KNK5	KNK5	KNK5	KNK6	KNK6	KNK6	KNK6	KNK6	KNK6	KNK6	KNK6	KNK6	KNK6
P ₂ O ₅	0.2	2 0.2	1 0.30	0.30	0.15	5 0.0	2 0.14	4 0.0	0 0.28	8 0.02	2 0.35	5 0.10	0.02
SiO ₂	31.0	8 30.0	30.67	29.63	29.80	29.0	0 30.20	29.2	6 29.2	5 30.13	30.16	6 28.83	3 31.63
TiO,	0.0	3 0.0	0.08 C	0.06	0.00	0.0	0.0	5 0.0	3 0.08	8 0.00	0.20	0.06	6 0.00
ZrO ₂	0.0	0.0	6 0.24	0.24	0.09	9 0.0	0 0.20	0.0	0 0.27	7 0.22	2 0.54	4 0.06	6 0.00
Al_2O_3	0.1	9 0.0	0.14	0.04	0.29	9 0.0	9 0.0	0.0	7 0.00	0.08	3 1.94	4 0.19	9 0.16
MgO	5.5	4 4.0	3.41	2.48	2.12	2 2.4	5 2.13	3 0.9	6 1.17	7 2.47	0.13	3 1.85	5 1.25
CaO	1.8	2 2.5	6 1.55	5 1.15	1.35	5 1.2	2 1.24	4 1.8 [°]	7 1.76	6 1.21	l 7.0 ²	1 1.33	3 1.73
BaO	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0 0.21	0.00	0.00	0.00
MnO	0.4	8 0.5	1 0.39	0.10	0.11	1 0.0	7 0.12	2 0.1	7 0.19	9 0.10	0.18	3 0.07	7 0.06
FeO	60.7	7 60.9	9 63.48	64.75	65.11	65.7	5 65.20	66.5	1 65.70	0 65.16	6 57.5 ⁻	1 65.14	4 65.89
Na ₂ O	0.0	0.0	0.00	0.00	0.12	2 0.0	0.0	0.1	3 0.00	0.00	0.52	2 0.00	0.00
K ₂ O	0.0	4 0.02	2 0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.52	2 0.02	2 0.00
Total	100.2	0 98.4	7 100.30	98.76	99.36	98.6	5 99.43	3 99.0	3 98.72	2 99.69	99.23	3 97.77	7 100.80
P ⁵⁺	0.00	6 0.00	0.008	0.009	0.004	4 0.00	1 0.004	4 0.00	0.008	8 0.001	0.010	0.003	3 0.001
Si ⁴⁺	0.99	9 0.99	5 1.000	0.992	0.995	5 0.98	1 1.00	5 0.992	2 0.990	0 1.002	0.989	9 0.985	5 1.033
Ti ⁴⁺	0.00	1 0.00	0.002	0.002	0.000	0.00	0.00	1 0.00	1 0.002	2 0.000	0.005	5 0.002	2 0.000
Zr ⁴⁺	0.00	0.00	1 0.004	0.004	0.001	0.00	0 0.00	3 0.00	0.004	4 0.004	0.00	9 0.001	1 0.000
Al ³⁺	0.00	7 0.00	0.005	0.002	0.011	1 0.00	4 0.00	0.00	3 0.000	0.003	3 0.075	5 0.008	3 0.006
Mg ²⁺	0.26	5 0.19	3 0.166	0.124	0.106	6 0.12 ⁴	4 0.10	6 0.04	9 0.059	9 0.122	2 0.006	6 0.094	4 0.061
Ca ²⁺	0.06	2 0.09	0.053	0.041	0.048	3 0.04	4 0.044	4 0.06	7 0.063	3 0.043	0.243	3 0.048	3 0.060
Ba ²⁺	0.00	0 0.00	0.000	0.000	0.000	0.00	0 0.00	0.00	0.00	0.003	0.000	0.000	0.000
Mn ²⁺	0.01	3 0.014	4 0.011	0.003	0.003	3 0.00	2 0.003	3 0.00	5 0.00	5 0.003	3 0.005	5 0.002	2 0.002
Fe ²⁺	1.63	3 1.69	1 1.730) 1.813	1.818	3 1.86	1 1.81	7 1.88	6 1.860	0 1.812	2 1.577	7 1.86′	1 1.800
Na⁺	0.00	0 0.00	0.000	0.000	0.008	3 0.00	0 0.00	0.00	9 0.00	0.000	0.033	3 0.000	0.000
K⁺	0.00	2 0.00	1 0.000	0.000	0.000	0.00	0 0.00	0.00	0 0.00	0.000	0.022	2 0.00	0.000
Catsum	n 2.98	8 2.99	6 2.979	2.989	2.995	5 3.01	6 2.984	4 3.01	0 2.992	2 2.992	2.973	3 3.005	5 2.963

Leucit se vyskytuje v podobě izometrických zrn o velikosti do 10 µm, která se shlukují podél zrn jiných fází, nebo jsou řetízkovitě uspořádána. WDS analýzy ukázaly kromě Si, Al a K také slabě zvýšené obsahy Fe (1.1 - 1.2 hm. % FeO) a Na (0.3 - 0.7 hm. % Na₂O) (tab. 6, obr. 6g).

Wüstit je charakteristickou fází magnetických strusek, jeho pravidelné dendrity jsou uzavírány sklovinou i hlavními krystalickými fázemi. Velikost zrn se pohybuje od 1 µm až do 300 µm. Vyskytuje se v několika generacích. Starší generace je charakteristická přítomností větších dendritů, zatímco mladší generace je tvořena výrazně menšími dendrity, které jsou hlavně uzavírány ve sklovině. Chemicky se jedná o téměř čistý FeO až na mírně zvýšené obsahy AI (0.7 - 0.8 hm. % Al₂O₃), Mg (0.3 hm. % MgO) a Ti (0.3 hm. % TiO₂) (tab. 7, obr. 6c,d a 7a).

Fayalit tvoří tabulkovité a kostrovité porézní krystaly, které mnohdy vykazují koncentrickou zonálnost, přičemž starší jádra se vyznačují hladkými okraji a mladší zóny či krystaly mají okraje péřovitě zubaté (obr. 7b). Zonálnost je patrná i z chemického složení, kdy jádra krystalů jsou tvořena téměř čistým fayalitem a okraje mají vyšší zastoupení forsteritové (max. 13.5 mol. %) a dikalciumsilikátové (max. 13.3 mol. %) komponenty. Tefroitová komponenta je v obou typech fayalitů obsažena vždy do 1 mol. % (tab. 8a,b, obr. 6c,e,f,g,h, obr. 7). Velikost krystalů je do 100 µm (délky) a do 30 µm (šířky). Sklovina se vyznačuje fluidální texturou a kolísavým chemickým složením s variabilním množstvím Fe (tab. 9a,b). Má výrazné fluidální uspořádání (obr. 6a,b), přičemž sklovina světlé barvy (v BSE obraze) obsahuje zvýšené množství FeO (průměrně 20 - 30 hm. %, v magnetické strusce KNK1 až 40 hm. %), zatímco tmavá sklovina (v BSE obraze) má podíl FeO minimální (nepřesahuje 2 hm. %).

Diskuse

Studovaný soubor strusek se podílem sklovitých strusek s fluidální texturou liší od fayalitových strusek královských hutí (Manasse, Mellini 2002). Sklovité strusky obsahují magnetit, méně wüstit a fayalit. Výjimkou jsou fayalitové strusky se shluky velkých tenkých tabulkovitých krystalů až 1 x 1 cm velké. Magnetické vlastnosti jsou závislé na obsahu uzavřeného železa, wüstitu a magnetitu, zatímco sklovina a fayalit magnetickou susceptibilitu strusek neovlivňovaly.

Stanovení chemického složení metodou RFA potvrdilo zvýšené obsahy těžkých kovů a metaloidů (As) ve všech *limonitizovaných* partiích studovaných strusek, zatímco fayalitové strusky nebo sklovité strusky bez *limonitizace* jsou těmito prvky mnohem chudší. Vznik *limonitu* lze předpokládat v souvislosti s intenzivním větráním kovového železa a případně i dalších Fe-bohatých struskových

Tabulka 9a Chemické složení skloviny (hm. %)

	38	39	40	41	42	43	44	45	46	47
	KNK1	KNK1	KNK2	KNK2	KNK3	KNK3	KNK3	KNK3	KNK4	KNK4
P ₂ O ₅	0.62	0.03	0.70	0.67	0.74	0.72	0.65	0.56	0.69	0.45
SiO	41.14	62.18	36.04	37.32	41.36	41.10	49.03	48.61	47.84	45.66
TiO,	0.35	0.49	0.39	0.21	0.39	0.52	0.30	0.24	0.95	0.97
Al ₂ Õ ₃	6.07	9.50	12.82	10.44	11.42	9.55	7.30	7.10	10.27	7.85
MgO	1.15	1.38	0.00	0.19	0.00	0.00	2.69	1.46	0.00	0.11
CaO	4.80	5.49	9.76	8.80	12.53	12.40	13.16	10.58	14.12	17.71
BaO	0.00	0.00	0.22	0.22	0.00	0.00	0.00	0.23	0.00	0.00
MnO	0.12	0.15	0.00	0.00	0.00	0.05	0.19	0.31	0.10	0.16
FeO	40.61	13.42	29.93	32.82	23.71	26.30	20.48	24.06	19.42	23.82
CuO	0.00	0.00	0.09	0.00	0.19	0.17	0.00	0.09	0.00	0.00
Na ₂ O	0.58	0.82	1.71	1.39	1.34	1.09	0.72	0.94	1.06	0.09
K₂Ō	1.88	3.65	3.93	3.98	2.54	2.37	1.87	1.81	2.74	1.28
Total	97.51	97.29	95.62	96.10	94.26	94.51	96.65	96.05	97.42	98.28

Tabulka 9b	Chemické	složení	skloviny	 pokračování
------------	----------	---------	----------	---------------------------------

	48	49	50	51	52	53	54	55	56
	KNK4	KNK4	KNK4	KNK5	KNK5	KNK5	KNK5	KNK6	KNK6
P ₂ O ₅	0.23	0.00	0.99	1.06	1.13	1.05	0.57	1.14	1.17
SiO2	59.94	65.09	49.28	44.51	46.17	45.80	45.27	39.02	39.72
TiO,	0.79	0.64	0.92	1.04	0.92	1.33	0.27	0.94	1.02
Al ₂ Õ ₃	10.34	10.69	10.91	5.70	6.22	7.31	7.36	16.26	16.59
MgO	3.86	2.36	0.00	0.34	0.19	0.41	0.52	0.00	0.00
CaO	18.23	11.82	14.33	18.03	18.68	16.95	14.91	13.58	13.16
BaO	0.13	0.10	0.00	0.26	0.39	0.27	0.18	0.00	0.26
MnO	1.20	0.53	0.13	0.18	0.19	0.14	0.24	0.00	0.00
FeO	1.33	1.58	17.68	23.61	22.34	21.62	24.04	19.51	20.01
CuO	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na₂O	0.78	0.75	0.84	0.85	0.99	0.59	0.68	1.62	2.03
K ₂ O	2.48	4.32	3.10	1.49	1.05	2.34	3.66	5.08	4.84
Total	99.53	98.00	98.45	97.13	98.40	97.98	97.92	97.32	99.00
Fe-chudá sklovina (tmavší v obraze BSF) - analýza 48 a 49 ve vzorku KNK4									

fází (wüstitu, magnetitu, fayalitu, skla). Zdroj těžkých kovů a metaloidů interpretujeme ve znečištění prachovými částicemi rudních minerálů z důlního provozu. Při zvětrání těchto sulfidů pak dochází k uvolnění těžkých prvků do zvětrávacích pórových vod a z nich pak k sorpci těžkých kovů a metaloidů na *limonit*. Jev sekundárního obohacení těžkými kovy a metaloidy sorpcí na *limonit* můžeme předpokládat i v jiných místech, často se liší nabohacení i na jednotlivých stranách téhož fragmentu strusky.

Tento fenomén byl zaznamenán i na struskových polích krušnohorské lokality Kremsiger (Šrein 2018), a zcela chybí na vybraných struskových nalezištích Českolipska nebo Mšena (nepublikovaný archiv autorů). Důlní a úpravárenské komplexy a debitáže jsou schopny ve svém okolí kontaminovat jednotlivé nálezy těžkými kovy, zatímco silikátové/nekovové prvky hojně v přírodě rozšířené jsou schopné se sorbovat i ze sedimentárního prostředí a přenést se do struskových artefaktů.

Písčitý sediment, který byl odebrán ve svahu pod Kaňkem na lokalitě Třešňovka a který obsahuje mimořádně zvýšené obsahy arsenu a zinku, má paralelu se starším nálezem písčitého sedimentu odebraného ve svahu blízko pod propadlinami (Šrein et al. 2007). I ten vykazoval zvýšený podíl arsenu, který však ve zmíněné práci nebyl dořešen. Vzorek byl odebraný z "horninové sutě rozvlečené soliflukčními pohyby", připomínající odtokový žlábek, který však měl v té době neznámý původ. Z hlediska nových poznatků spojených s nálezem trejvu mohl náležet právě tomuto zařízení, kdy trejv sloužil především jako vodotěžní zařízení k odvodnění podzemí a voda odtékala žlábkem po svahu dolů, přičemž došlo k usazování jemných pevných částic, vyplavených z podzemí a obsahujících těžké kovy a As. I když hodnoty kolísají, nejvyšší obsahy stříbra, antimonu a cínu mají hlíny ze zbytků odpadního koryta.

Závěr

Nález archeologických artefaktů významně doplňuje výzkum těžního zařízení poháněného koňmi, tzv. trejvu, který byl archeologicky doložen na plošině u propadliny P1 (Tomášek 1999, 2018). Situace dobře zapadá nejen do nálezu železitého, ale i písčitého sedimentu, který je mimořádně bohatý zinkem a arsenem a dokládá přítomnost odtokového žlábku ve svahu pod trejvem. Struskový materiál se chemickým i fázovým složením výrazně liší od strusek po hutnickém zpracování polymetalických rud, zkoumaných Manassem, Mellinim (2002) v oblasti Vrbova mlýna. Vzhledem k nepřítomnosti fází jako hedenbergit, ferrobustamit, sulfid zinku nebo troilit nebyl doložen ani předpoklad kontaminace námi zkoumaných strusek tímto materiálem. Naopak je ve struskách přítomno mikroskopické ryzí železo, leucit, wüstit a magnetit. Hlavní chemické rozdíly lze spatřovat v obsazích zinku, olova, mědi a hliníku. Obdobná situace je v krušnohorském revíru Kremsiger u Přísečnice (Šrein 2018), kde většina strusek patří ke kovářským struskám důlních kováren. Není pochyb, že kovárenský provoz na Kaňku sloužil opravám trejvu a skupině dolů v okolí.

Kontaminovaná zemina z místa nálezu strusek je jen potvrzením ovlivnění dobývaným materiálem nepochybně pocházejícím z turkaňského pásma (cínová akcesorie). Potvrdil se předpoklad existence rudního prádla v oblasti Třešňovky ve svahu Kaňku.

Poděkování

Předložená práce vznikla za finanční podpory Ministerstva kultury ČR v rámci institucionálního financování dlouhodobého koncepčního rozvoje výzkumné organizace Národní muzeum (DKRVO 2019-2023/1.III.a, 00023272).

Literatura

- BARTOŠ M (2004) Propadlina na turkaňském pásmu u Kutné Hory. Kutnohorsko - vlastivědný sborník 7: 33-40. Kuttna, Kutná Hora
- MANASSE A, MELLINI M (2002) Archaeometallurgic slags from Kutná Hora. N Jb Miner Mh 8: 369-384
- PAULIŠ P, MIKUŠ M (1998) Stříbrná stezka hornická naučná stezka v Kutné Hoře. Stručná historie kutnohorského dolování. Kuttna, Kutná Hora
- Pouchou JL, Pichoir F (1985) "PAP" (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed.) Microbeam Analysis: 104-106. San Francisco Press, San Francisco
- Svoboda K (1998) Příspěvek k historii dolování stříbra v kutnohorském důlním revíru. In: Stříbrná Jihlava, seminář k dějinám hornictví a důlních prací na Vysočině, Jihlava: 4-20
- ŠREIN V (2018) Analýzy strusek. In Derner K (ed.) Středověké hornictví a hutnictví na Přísečnicku ve středním Krušnohoří (ArchaeoMontan Band 5) 395-407. Publikace Zemského úřadu pro archeologii Sasko, svazek 68
- ŠREIN V, ŠŤASTNÝ M, ŠREINOVÁ B, KRÁLOVÁ J, SCHWEIGSTILLO-VÁ J (2007) Spodnoturonské písčité vápence v Kutné Hoře a Miskovicích. Bull mineral-petrolog Odd Nár Muz (Praha) 14-15: 170-176
- Тома́šек M (1999) Zpráva o záchranném archeologickém výzkumu provedeném na lokalitě Kaňk, o. Kutná Hora. Archiv ARÚ AV ČR Praha, čj. 7367/99
- TOMÁŠEK M (2018) Kaňk u Kutné Hory. Kutnohorsko vlastivědný sborník 20: 43-48. Kuttna, Kutná Hora