Mineralogická charakteristika mramorov asociovaných s bazaltovými metapyroklastikami a chloritickými bridlicami z lokality Markuška (Slovenská republika)

Mineralogical characteristics of marbles associated with basalt metapyroclastics and chlorite schists from the locality Markuška (Slovak Republic)

PETER RUŽIČKA^{1)*}, PETER BAČÍK¹⁾ A SERGII KURYLO²⁾

¹⁾Katedra mineralógie a petrológie, Prírodovedecká fakulta, Univerzita Komenského v Bratislave, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovenská republika; *e-mail: peter.ruzicka@uniba.sk
²⁾Ústav vied o Zemi, Slovenská akadémia vied, Ďumbierska 1, 974 11 Banská Bystrica, Slovenská republika

RUŽIČKA P, BAČIK P, KURYLO S (2019) Mineralogická charakteristika mramorov asociovaných s bazaltovými metapyroklastikami a chloritickými bridlicami z lokality Markuška (Slovenská republika). Bull Mineral Petrolog 27(2): 247-258 ISSN 2570-7337

Abstract

Mineral composition of marbles, basalt metapyroclastics and chlorite schists was determined at the locality of Markuška. Magnesium-rich actinolite to tremolite was found in basalt metapyroclastics and marbles. In amphiboles, the Fe content ranges from 0.71 to 0.95 *apfu* in the iron-rich zone and from 0.40 to 0.63 *apfu* in the Mg-rich zone. At the A site, the Na content is below 0.13 *apfu* and the *B* site is predominantly occupied by Ca with > 1.87 *apfu*. Epidote, titanite, albite and fluorapatite occur only in basalt metapyroclastics. Magnesium-rich talc has been identified only in marbles in association with clinochlore. Epidote and titanite have very low substitutions. Chlorites have the greatest chemical variability. The X_{Mg} decreases from chlorite in association with talc in marble (0.79 - 0.82), to chlorite in chlorite schists (0.74) and in basalt metapyroclastics (0.63 - 0.65).

Key words: mineral composition, marbles, basalt metapyroclastics, chlorite schists, Markuška, Slovak Republic Obdrženo 24. 8. 2019; přijato 25. 10. 2019

Úvod

Objektom nášho mineralogického výskumu bol v súčasnosti opustený kameňolom, ktorý je pozostatkom po ťažbe mramorov a s nimi asociovaných bazaltových metapyroklastík s polohami chloritických bridlíc. Horniny sú dobre štiepateľné a v minulosti sa používali na výrobu hrubo opracovaných dekoračných kamenárskych výrobkov. Cieľom detailného mikroskopického a následne mikrosondového štúdia bolo pozorovanie distribúcie hlavne silikátových fáz s prejavmi ich kompozičných zmien, ktoré sú spoločne asociované v mramoroch, bazaltových metapyroklastikách a chloritických bridliciach.

Lokalizácia

Južne od obce Markuška vystupuje na povrch niekoľko šošoviek svetlých mramorov, ktoré vytvárajú izolované skalné bralá. Mnohé z výskytov mramorov boli v minulosti ťažené v menších kameňolomoch. Skúmaná lokalita predstavuje opustený kameňolom (obr. 1) na juhovýchodnom svahu kóty Vysoká hora (711 m n. m.), cca 2 km južne od obce Markuška. Kameňolom bol založený v roku 1970 (Macko, Zlocha 1971). Lokalita sa nachádza v okrese Rožňava. Orograficky patrí do oblasti Slovenského rudohoria, celku Revúcka vrchovina, oddielu Hrádok a časti Štítnické podolie (Mazúr, Lukniš 1980).

Reliéf terénu je členitý a kopcovitý. V blízkosti územia tečie Hankovský potok. Poloha lokality zodpovedá 48°42.918' severnej šírky a 20°19.712' východnej dĺžky s nadmorskou výškou 410 m.

Geologická charakteristika

V kameňolome sa vyskytujú tmavé zelenosivé bazaltové metapyroklastiká s polohami sivozelených chloritických bridlíc a šošovkami svetlých mramorov. Skúmaná lokalita bola v minulosti geologicky rôzne interpretovaná. V starších prácach (Andrusov 1953; Snopko 1957; Fusán 1959; Abonyi 1971) bola zaradená do karbónu. Dúbravské vrstvy karbónskeho veku definoval Fusán (1959) podľa typovej lokality Ochtinská Dúbrava, kde sa striedajú svetlé mramory s bazaltovými metapyroklastikami a čiastočne s metapelitmi. Celý komplex hornín bol neskôr redefinovaný na dúbravské súvrstvie Bajaníkom et al. (1984) na základe poznatkov Kantora (1955, 1956), Kamenického (1957), Reichwaldera (1970, 1973), Marka (1981) a bol zaradený do triasu meliatika. Po zavedení termínu príkrov Bôrky (Leško, Varga 1980) ako samostatnej tektonickej jednotky, sa začali zjednocovať výskyty litologických členov, čo viedlo k preradeniu lokality z meliatika do príkrovu Bôrky. Na základe definovania kompletnej litostratigrafie príkrovu Bôrky (Mello et al. 1997, 1998) zastávame názor, podľa ktorého skúmanú lokalitu považujeme za súčasť triasovo-jurskej hačavskej sekvencie dúbravského súvrstvia príkrovu Bôrky (obr. 2), napriek konfrontačným názorom, ktoré prezentovali Gazdačko (2005) a Ivan (2007). Gazdačko (2005) tvrdí, že karbonáty v oblasti Markušky majú karbónsky vek a koreluje ich so zlatníckym súvrstvím dobšinskej skupiny severného gemerika. Ivan (2007) sa pokúsil redefinovať litostratigrafiu príkrovu Bôrky na základe geochemického štúdia metabazitov.

Typickým znakom v rámci príkrovu Bôrky, ktorý sa bezprostredne vzťahuje na skúmanú lokalitu, je synchrónnosť bázickej vulkanickej aktivity a karbonátovej sedimentácie, na ktorú poukázal už Reichwalder (1970, 1973). Príkrov Bôrky má faciálnu afinitu paleozoických členov ku gemeriku a mezozoických členov k meliatiku (Leško, Varga 1980). Považuje sa za zvyšok subdukčno -akrečného komplexu, ktorý predstavuje melanž blokov a tektonických šupín obsahujúcich horniny s preukázanou stredno- a vysokotlakovou metamorfózou (Mello et al. 1997, 1998; Vozárová 1993; Plašienka et al. 2019).

Určitým hendikepom je problematické stanovenie veku mramorov, ktoré boli pôsobením intenzívnej regionálnej metamorfózy zbavené akéhokoľvek biostratigraficky datovateľného materiálu. Čiastočným riešením tejto komplikácie bola korelácia s analogickými výskytmi mramorov v meliatiku a turnaiku, čo prinieslo na základe konfrontácie vzhľadu, zloženia a pozície vo vrstvovom slede úvahu o ich pravdepodobnom veku, ktorý bol odhadnutý na stredný trias s predpokladaným protolitom mramorov, ktorými boli steinalmské vápence (Mello et al. 1997). Mramory s polohami rekryštalizovaného bázického vulkanického materiálu vyskytujúce sa vo forme izolovaných fragmentov (bloky, šošovky) tvoria dominantné litologické zastúpenie v dúbravskom súvrství. Lokálne, vo vyšších častiach metakarbonátovo-metabázického komplexu, sa vyskytujú kremité chloriticko-muskovitické fylity, ktoré obsahujú prímes bázického tufitického materiálu (Mello et al. 1997).

Metodika

Terénny odber reprezentačných vzoriek bol zameraný na získanie hlavných litotypov v rámci skúmanej lokality s cieľom ich mikroskopického a následne mikrosondového štúdia s detailom na zachytenie prípadných kompozičných rozdielov identických silikátových fáz, ktoré sú súčasťou minerálneho zloženia jednotlivých litotypov. Minerálne zloženie a mikroštruktúra vzoriek bola študovaná vo výbrusoch pomocou polarizačného mikroskopu Leica DM2500P na Katedre mineralógie a petrológie Prírodovedeckej fakulty Univerzity Komenského v Bratislave. Účelom mikroskopického pozorovania v prechádzajúcom svetle bolo zistenie štruktúrnych vzťahov a vyznačenie fáz pre identifikáciu pomocou elektrónového mikroanalyzátora. Leštené výbrusy, vákuovo naparené tenkou uhlíkovou vrstvou, boli analyzované na elektrónovom mikroanalyzátore JEOL JXA 8530FE na Ústave vied o Zemi Slovenskej akadémie vied v Banskej Bystrici. Vzorky boli analyzované pri urýchľovacom napätí 15 kV a prúde 17 nA pre kalcit, amfiboly, epidot, titanit, apatit a 20 nA pre chlority a albit. Priemer elektrónového lúča sa

a

Obr. 1 Lokalizácia skúmaného územia: a) v mape Slovenskej republiky; b) pohľad na opustený kameňolom s detailom mramorovej polohy. Foto P. Ružička 2018.

prispôsoboval počas merania pre silikáty na 2 - 10 µm, pre kalcit na 12 µm a apatit 7 µm. Použila sa ZAF korekcia. Mikroštruktúrne znaky a distribúcia fáz sa pozorovali v spätne rozptýlených elektrónoch (BSE - back scattered electron). Na meranie silikátov a kalcitu boli použité štandardy (rtg. línie): Si, Al, K (K α) - ortoklas, Ti (K α) - rutil, Fe (K α) - hematit, Mn (K α) - rodonit, Mg, Ca (K α) - diopsid, Na (K α) - albit. Na meranie apatitu boli použité štandardy (rtg. línie): Ca, P (K α) - apatit, F (K α) - fluorit.

Elektrónové mikroanalýzy amfibolov boli prepočítané v zmysle platnej klasifikácie Hawthorne et al. (2012). Klasifikačný diagram amfibolov podľa Leake et al. (1997) bol použitý z dôvodu grafického vyjadrenia rozdielov v klasifikačných parametroch, ktoré sú postavené na porovnávaní obsahov Si vs. Mg (Mg + Fe²⁺) v *apfu*, na rozdiel od klasifikačného diagramu Hawthorne et al. (2012), ktorý vychádza z porovnávania °(Al + Fe³⁺ + 2Ti) vs. ^A(Na + K + 2Ca) v *apfu*. Obsahy železa boli rozpočítané na Fe²⁺ a Fe³⁺ z nábojovej bilancie podľa postupu uvedeného v práci Leake et al. (1997). Elektrónové mikroanalýzy minerálov epidotovej superskupiny boli prepočítané podľa klasifikácie Armbruster et al. (2006). Elektrónové mikroanalýzy chloritov po prepočte boli graficky vyhodnotené podľa práce Zane a Weiss (1998).

V texte používané slovenské názvy minerálov sú upravené podľa Ozdína a Uhera (2002) a slovenské názvy amfibolov vychádzajú z článku Bačík et al. (2013). Používané skratky minerálov sú uvádzané podľa Siivola, Schmid In: Fettes, Desmons et al. (2007).

Výsledky

Petrografický opis vzoriek

Svetlé, prevažne biele *mramory* sú masívne až vrstevnaté, lokálne tvoria hrubé lavice v intervale 15 až 30 cm s charakteristickým striedavým žltohnedým a sivomodrým páskovaním. Pravidelne sa opakujúce paralelné farebné pruhy sa vyznačujú rôznou hrúbkou. Farebnú nehomogenitu mramorov lokálne spôsobujú vložky žltohnedých dolomitov, sivozelených chloritických bridlíc a tmavých zelenosivých bazaltových metapyroklastík (obr. 3). Prímes metapyroklastického materiálu zvýraznila vrstev-

Obr. 2 Zjednodušená geologická mapa skúmaného územia modifikovaná podľa Bajaníka et al. (1984) s vyznačeným miestom odberu vzoriek.

natú bridličnatosť mramorov, ktoré zostávajú masívnejšie len v čistejších bielych typoch. Na plochách vrstevnatosti mramorov občas bývajú makroskopicky pozorovateľné šupinky svetlých sľúd, ktoré pravdepodobne vznikli rekryštalizáciou ílovitej prímesi pochádzajúcej z pelitických sedimentov. Štruktúra mramorov je granoblastická až lepidogranoblastická. Minerálnu asociáciu skúmaných mramorov tvorí kalcit, amfibol, chlorit a talk.

Tmavé zelenosivé *bazaltové metapyroklastiká* sú masívne, jemno- až strednozrnné s nepravidelne vyvinutou bridličnatosťou. Niektoré typy majú plošne paralelnú až páskovanú textúru, ktorú zvýrazňujú tenké žilky kremeňa a karbonátov. Často sa striedajú vrstvy bazaltových metapyroklastík s mramormi doskovitej až lavicovej odlučnosti. Horniny bývajú tektonicky porušené a intenzívne zvrásnené. Mikroskopicky majú granolepidoblastickú až lepidogranoblastickú štruktúru. Minerálnu asociáciu tvorí amfibol, epidot, chlorit, albit, titanit, apatit a kremeň. Akcesoricky sú zastúpené rudné minerály ako pyrit, hematit a magnetit. V dôsledku asociácie s mramormi obsahujú podiel karbonátovej zložky.

Sivozelené chloritické bridlice prejavujú viditeľné

Obr. 3 Prierezy skúmaných vzoriek mramorov asociovaných s bazaltovými metapyroklastikami a chloritickými bridlicami z lokality Markuška. Foto P. Ružička.

Obr. 4 Porovnanie mikroskopických verzus BSE detailov identifikovaných minerálov. Význam použitých skratiek: Act - aktinolit, Ep - epidot, Chl - chlorit, Ttn - titanit, Ap - apatit, Cal - kalcit. Fotografie z polarizačného mikroskopu P. Ružička. BSE foto S. Kurylo.

znaky tektonometamorfného postihnutia. Zelenkasté sfarbenie spôsobujú dominantne zastúpené chlority. Textúru majú laminovanú a štruktúru lepidoblastickú.

Identifikované minerály

Amfiboly pozorované v prierezoch tvoria väčšinou drobné ihličkovité až steblovité zrná viac zastúpené spolu s chloritmi v bazaltových metapyroklastikách, ktoré v podobe menej zastúpených izolovaných kryštálov prechádzajú aj do mramorov. Z hľadiska chemického zloženia patria medzi Ca amfiboly, konkrétne ide o Mg-obohatený aktinolit až tremolit (obr. 4a,b; obr. 6; tab. 1). Amfiboly prejavujú oscilačnú zonálnosť (obr. 5b,d,f). Vo svetlej zóne obohatenej železom sa obsah Fe pohybuje v intervale 0.71 až 0.95 *apfu* a vo vysoko horečnatej tmavej zóne je obsah Fe od 0.40 do 0.63 *apfu* (tab. 1), pričom pomery Mg/(Fe²⁺+Mg) (X_{Mg}) v týchto zónach majú rozsahy 0.81 - 0.86 a 0.87 - 0.92. V pozícii *A* je veľmi nízky obsah Na (pod 0.13 *apfu*) a pozícia *B* je dominantne obsadená Ca (nad 1.87 *apfu*). Na základe veľmi nízkeho obsahu Na nebol potvrdený trend glaukofánovej substitúcie v amfiboloch.

Obr. 5 BSE detaily analyzovaných fáz: a) prerastanie chloritu a talku; b, d, f) ukážky zonálnosti amfibolov; c) nízky prejav zonálnosti epidotu; e) porfyroblast albitu. Význam použitých skratiek: Act - aktinolit, Ep - epidot, Chl - chlorit, Tlc - talk, Ttn - titanit, Ab - albit, Cal - kalcit. BSE foto S. Kurylo.

Epidot vytvára nepravidelné drobno- až strednozrnné agregáty (obr. 4c,d) zriedkavo tvorí idiomorfne obmedzené stĺpčeky. Vyskytuje sa hlavne v bazaltových metapyroklastikách. Z mikroskopického hľadiska má vysoký reliéf a pestré interferenčné farby. Väčšina zŕn v BSE režime má slabo viditeľnú chemickú zonálnosť (obr. 5c). V epidotoch je nízka miera substitúcie, hlavne Al v pozícii *M*1 a Fe³⁺ v pozícii *M*3 sú substituované zanedbateľne,

Obr. 6 Prepočítané hodnoty analyzovaných amfibolov vynesené do klasifikačných diagramov podľa: a) Leake et al. (1997); b) Hawthorne et al. (2012).

Tabuľka 1 Reprezentatívne elektrónové mikroanalýzy amfibolov (hm. %) prepočítané na 15 katiónov (apfu). Symbol* vyjadruje dopočítanie H₂O pre OH.

Analýza	1	2	3	4	5	6	7	8	
Hornina	Mram	or	Metapyrok	lastikum	Mrai	mor	Metapyro	oklastikum	
Zonálnosť		Svetlá	zóna			Tmavá zóna			
SiO ₂	56.04	56.28	56.07	55.46	56.78	57.21	57.69	57.31	
TiO	0.03	0	0	0.08	0.07	0	0.04	0.01	
$Al_2 \bar{O}_3$	1.06	0.97	1.46	1.26	0.50	0.16	0.70	0.32	
Fe ₂ O ₃	0	0	0	0	0	1.06	0	0.12	
FeO	7.74	8.61	10.29	9.35	5.85	4.19	6.35	6.46	
MnO	0.02	0.12	0.14	0.12	0.11	0.11	0.09	0.14	
MgO	20.11	19.59	18.95	18.96	20.46	21.81	21.78	21.10	
CaO	12.71	12.66	12.55	12.53	13.12	13.57	12.72	13.23	
Na ₂ O	0.35	0.48	0.33	0.38	0.31	0.10	0.35	0.16	
K ₂ O	0	0	0	0	0	0	0.07	0	
H ₂ O*	2.13	2.13	2.14	2.11	2.13	2.16	2.19	2.16	
Total	100.17	100.83	101.95	100.25	99.33	100.37	101.97	101.02	
Si ⁴⁺	7.891	7.924	7.854	7.880	8.012	7.926	7.916	7.945	
Al ³⁺	0.109	0.076	0.146	0.120	0	0.026	0.084	0.053	
T-suma	8.000	8.000	8.000	8.000	8.000	7.951	8.000	7.998	
Ti ⁴⁺	0.003	0	0	0.008	0.007	0	0.004	0.001	
Al ³⁺	0.066	0.086	0.096	0.091	0.083	0	0.029	0	
Fe ³⁺	0	0	0	0	0	0.096	0	0.011	
Mg ²⁺	4.221	4.112	3.958	4.016	4.304	4.505	4.454	4.360	
Mn ²⁺	0	0	0	0	0.008	0	0	0	
Fe ²⁺	0.709	0.802	0.946	0.885	0.598	0.399	0.513	0.628	
C-suma	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	
Fe ²⁺	0.080	0.076	0.099	0.078	0	0.022	0.119	0.021	
Mn ²⁺	0.002	0.014	0.016	0.014	0.005	0.013	0.011	0.016	
Ca ²⁺	1.918	1.910	1.884	1.908	1.983	1.966	1.870	1.963	
Na⁺	0	0	0	0	0.012	0	0	0	
<i>B</i> -suma	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	
Ca ²⁺	0	0	0	0	0	0.049	0	0.002	
Na⁺	0.095	0.131	0.091	0.105	0.074	0.026	0.093	0.044	
K ⁺	0	0.001	0	0.001	0	0.001	0.012	0	
A-suma	0.095	0.131	0.091	0.106	0.074	0.076	0.105	0.046	
OH	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	

				, ,	2 1	
Analýza	1	2	3	4	5	6
Zonálnosť	Ti	mavá zóna		SI	vetlá zóna	
SiO ₂	36.94	37.31	36.69	36.98	37.23	36.83
TiO ₂	0.18	0	0.12	0	0.11	0.08
Al_2O_3	21.42	22.15	21.45	22.10	22.23	20.89
Fe ₂ O ₃	16.47	15.78	15.82	15.56	14.58	16.78
FeO	0	0	0	0.02	0.05	0
MnO	0.02	0.16	0.17	0.04	0	0.11
CaO	23.12	23.45	23.48	22.88	23.19	23.46
H ₂ O*	1.86	1.88	1.86	1.86	1.86	1.86
Suma	100.03	100.73	99.60	99.44	99.25	100.00
Si ⁴⁺	2.970	2.968	2.957	2.979	2.997	2.965
Al ³⁺	0.030	0.032	0.043	0.021	0.003	0.035
ΣΤ	3.000	3.000	3.000	3.000	3.000	3.000
Mn ²⁺	0.001	0.011	0.012	0.003	0	0.007
Fe ²⁺	0	0	0	0.001	0.003	0
Fe ³⁺	0.997	0.945	0.960	0.943	0.883	0.993
Al ³⁺	0.002	0.044	0.029	0.052	0.113	0
Σ <i>M</i> 3	1.000	1.000	1.000	1.000	1.000	1.000
Al ³⁺	1.000	1.000	1.000	1.000	1.000	1.000
Σ <i>M</i> 2	1.000	1.000	1.000	1.000	1.000	1.000
Al ³⁺	0.998	1.001	0.965	1.025	0.993	0.948
Ti ⁴⁺	0.011	0	0.007	0	0.006	0.005
Fe ³⁺	0	0	0	0	0	0.024
Σ <i>M1</i>	1.009	1.001	0.973	1.025	0.999	0.977
Ca ²⁺	1.000	1.000	1.000	1.000	1.000	1.000
ΣΑ1	1.000	1.000	1.000	1.000	1.000	1.000
Ca ²⁺	0.991	0.999	1.027	0.975	1.001	1.023
ΣΑ2	0.991	0.999	1.027	0.975	1.001	1.023
OH-	1.000	1.000	1.000	1.000	1.000	1.000

Tabuľka 2 Reprezentatívne elektrónové mikroanalýzy epidotu (hm. %) prepočítané na 8 katiónov (apfu). Symbol* vyjadruje dopočítanie H₂O pre OH.

Tabuľka 3 Reprezentatívne elektrónové mikroanalýzy titanitu (hm. %) prepočítané na 3 katióny (apfu).

Analýza	1	2	3	4	5	6
SiO ₂	30.27	30.01	30.35	30.51	30.50	30.20
TiO ₂	39.74	38.01	39.65	39.55	39.19	37.00
Al_2O_3	0.53	1.19	0.54	0.64	0.99	1.59
Fe ₂ O ₃	0.21	0.41	0.43	0.32	0.90	0.62
CaO	28.94	28.61	28.78	28.73	28.71	29.01
Suma	99.69	98.22	99.74	99.75	100.29	98.40
Si ⁴⁺	0.988	0.990	0.990	0.995	0.988	0.991
Al ³⁺	0.012	0.010	0.010	0.005	0.012	0.009
Suma	1.000	1.000	1.000	1.000	1.000	1.000
Ti ⁴⁺	0.975	0.943	0.973	0.970	0.955	0.913
Al ³⁺	0.008	0.036	0.011	0.019	0.026	0.052
Fe ³⁺	0.005	0.010	0.011	0.008	0.019	0.015
Suma	0.988	0.989	0.994	0.997	1.000	0.980
Fe ³⁺	0	0	0	0	0.003	0
Ca ²⁺	1.012	1.011	1.006	1.003	0.997	1.020
Suma	1.012	1.011	1.006	1.003	1.000	1.020

pričom Ti a Mn len mierne prekračujú obsah 0.01 *apfu* (obr. 7a; tab. 2).

Titanit sa vyskytuje v podobe izolovaných zŕn (obr. 4e,f) až agregátov priamo v bazaltových metapyroklastikách spolu s epidotom a chloritmi. Prejavuje zanedbateľnú substitúciu Al (do 0.04 *apfu*) a Fe^{3+} (do 0.02 *apfu*) za Ti (tab. 3).

Chlority majú výrazný svetlozelený pleochroizmus a hnedé interferenčné farby. Tvoria šupinky až lišty dominantne rozptýlené v bazaltových metapyroklastikách spolu s epidotom a aktinolitom. V mramoroch sú priamo v asociácii s amfibolmi a talkom. Tvoria hlavnú fázu v chloritických bridliciach. Z hľadiska chemického zloženia majú zo študovaných minerálov najväčšiu variabilitu (tab. 4). Pomer X_{Ma} klesá od chloritu v asociácii s talkom v mramore (0.96), cez chlorit s aktinolitom v mramore (0.79 - 0.82), až po chlorit v chloritickej bridlici (0.74) a v bazaltových metapyroklastikách (0.63 - 0.65). Napriek tomu, všetky chlority majú zloženie spadajúce do poľa klinochlóru (obr. 7b).

Talk v podobe nepravidelných agregátov bol pozorovaný len v mramoroch priamo v asociácii s chloritmi (obr. 5a). Z hľadiska chemického zloženia má mierne zvýšený obsah Fe²⁺, ktorý dosahuje 0.06 *apfu* (tab. 5).

Albit tvorí porfyroblastické zrná prevažne hypidiomorfne obmedzené v bazaltových metapyroklastikách (obr. 5e). Zloženie má blízke koncovému členu, len v jednej analýze bolo zistené 0.03 *apfu* Ca, pričom ostatné obsahy Ca a K sú pod 0.005 *apfu* (obr. 7c, tab. 6).

Apatit v akcesoricky prítomnej forme izolovaných zŕn bol pozorovaný len v bazaltových metapyroklastikách (obr. 4g,h). Z hľadiska chemického zloženia sa vyskytuje čistý fluórapatit (tab. 7), ktorý obsahuje 0.79 - 0.88 F a 0.12 až 0.21 *apfu* (OH)⁻.

Kalcit tvorí hlavnú zložku mramorov. Stredne- až hrubozrnitý kalcit prejavuje náznaky prednostnej orientácie. Tvorí prevažne izometrické zrná so zubovitými hranicami. Mikroskopicky je pozorovateľná striedavá jemná až hrubá laminácia kalcitových zŕn. V hrubších kalcitových zrnách je viditeľné dvojčatné lamelovanie. Lamely sa odlišujú svojou orientáciou, šírkou a tvoria rôzne deformačné systémy. V zložení niektorých kalcitov bola identifikovaná zvýšená hodnota MgO, ktorá sa pohybuje v intervale 0.48 až 1.11 hm. % (tab. 8).

Analýza	1	2	3	4	5	6	7	8	9
Hornina	Mrar	mor (Chl +	Tlc)	Mr	amor (Chl +	Act)	Metapyrol	klastikum	Bridlica
SiO ₂	32.37	32.10	32.37	29.97	30.45	30.46	28.47	27.73	29.60
TiO2	0	0	0	0	0	0	0.13	0	0.03
Al_2O_3	18.07	18.61	18.39	18.70	19.17	19.25	19.81	19.39	19.37
FeO	2.34	2.28	2.54	12.30	11.15	10.61	19.15	20.05	14.96
MnO	0	0	0.10	0.08	0.04	0.09	0.11	0.13	0.11
MgO	33.09	32.97	32.64	25.97	27.29	27.26	20.35	19.54	23.59
CaO	0.13	0.08	0.05	0.14	0.10	0.10	0.03	0.09	0.14
Na ₂ O	0.01	0	0	0	0.02	0	0.01	0	0.01
K₂O	0	0	0	0	0	0.01	0.01	0	0
H ₂ O*	12.69	12.70	12.69	12.18	12.42	12.39	11.88	11.64	12.11
Suma	98.69	98.73	98.79	99.33	100.64	100.16	99.92	98.55	99.91
Si ⁴⁺	3.060	3.032	3.059	2.951	2.941	2.948	2.875	2.858	2.930
IVAI ³⁺	0.940	0.968	0.941	1.049	1.059	1.052	1.125	1.142	1.070
T-sum.	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Ti ⁴⁺	0	0	0	0	0	0	0.010	0	0.002
^{VI} AI ³⁺	1.073	1.103	1.106	1.120	1.123	1.144	1.233	1.213	1.190
Fe ²⁺	0.185	0.180	0.200	1.012	0.900	0.859	1.617	1.728	1.238
Mn ²⁺	0	0	0.008	0.007	0.003	0.007	0.009	0.011	0.009
Mg ²⁺	4.663	4.642	4.597	3.812	3.930	3.933	3.063	3.002	3.482
Ca ²⁺	0.013	0.008	0.005	0.014	0.011	0.010	0.003	0.010	0.015
Na⁺	0.002	0	0	0.001	0.003	0	0.002	0	0.002
K⁺	0	0	0	0	0	0.001	0.001	0	0
<i>M-</i> sum.	5.935	5.933	5.918	5.965	5.970	5.954	5.937	5.964	5.939
OH-	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000

Tabuľka 4 Reprezentatívne elektrónové mikroanalýzy chloritov (hm. %) prepočítané na 14 kyslíkov (apfu). Symbol* vyjadruje dopočítanie H₂O pre OH⁻.

Na⁺ 0.00

0.25

0.50

superskupiny; b) chlority (Zane, Weiss 1998); c) živce.

^{1.00} Ca²⁺

0.75

Tabuľka 5 Reprezentatívne elektrónové mikroanalýzy talku (hm. %) prepočítané na 11 aniónov (apfu). Symbol* vyjadruje dopočítanie H₂O pre OH:.

Analýza	1	2	3	4
SiO	65.13	64.83	64.80	64.70
TiO2	0.02	0.04	0	0.01
Al_2O_3	0.03	0.02	0	0.02
FeO	0.71	0.88	1.10	0.75
MnO	0	0	0.02	0.05
MgO	31.93	31.68	31.32	31.58
CaO	0.08	0.05	0.02	0.03
Na ₂ O	0	0	0	0.01
K₂O	0	0.01	0.01	0.01
H ₂ O*	4.87	4.85	4.83	4.83
Suma	102.78	102.35	102.11	101.99
Si ⁴⁺	4.011	4.011	4.021	4.015
^{IV} AI ³⁺	0	0	0	0
T-sum.	4.011	4.011	4.021	4.015
Ti ⁴⁺	0.001	0.002	0	0.001
^{VI} AI ³⁺	0.002	0.001	0	0.002
Fe ²⁺	0.036	0.046	0.057	0.039
Mn ²⁺	0	0	0.001	0.003
Mg ²⁺	2.931	2.922	2.897	2.921
Ca ²⁺	0.005	0.003	0.002	0.002
Na⁺	0	0	0	0.001
K ⁺	0	0	0.001	0.001
M-sum.	2.976	2.975	2.958	2.969
OH-	2.000	2.000	2.000	2.000

Tabuľka 6 Reprezentatívne elektrónové mikroanalýzy albitu (hm. %) prepočítané na 5 katiónov (apfu).

			,			
Analýza	1	2	3	4	5	6
SiO ₂	67.75	68.97	68.85	68.86	68.69	68.75
Al ₂ O ₃	19.15	19.39	19.43	19.45	19.57	19.47
CaO	0.56	0.04	0.07	0.05	0.06	0.04
Na ₂ O	11.69	11.97	11.69	12.05	11.89	11.80
K₂Ō	0.06	0.05	0.05	0.06	0.05	0.05
Suma	99.22	100.42	100.09	100.47	100.26	100.10
Si ⁴⁺	2.980	2.995	3.005	2.987	2.988	2.998
Al ³⁺	0.993	0.992	0.999	0.994	1.003	1.000
Ca ²⁺	0.027	0.002	0.003	0.002	0.003	0.002
Na⁺	0.997	1.008	0.989	1.013	1.003	0.997
K⁺	0.003	0.003	0.003	0.003	0.003	0.003
Suma	5.000	5.000	5.000	5.000	5.000	5.000

Tabuľka 7 Reprezentatívne elektrónové mikroanalýzy apatitu (hm. %) prepočítané na 8 katiónov (apfu) s dopočítanou H₂O ako 1-F.

Analýza	1	2	3	4
P ₂ O ₅	43.15	43.01	42.88	43.14
CaŎ	56.47	56.35	56.22	55.79
F	3.04	3.35	3.14	3.31
H ₂ O	0.38	0.22	0.32	0.23
O=F	-1.52	-1.68	-1.57	-1.66
Suma	102.66	102.71	102.24	102.25
Р	3.012	3.010	3.008	3.034
Са	4.988	4.990	4.992	4.966
F	0.793	0.876	0.823	0.871
OH	0.207	0.124	0.177	0.129

Diskusia

Skúmaná lokalita sa spomína vo viacerých prieskumných geologických prácach zameraných na posudzovanie vhodnosti mramorov a s nimi asociovaných bazaltových metapyroklastík pre dekoračné využitie (Suchár et al. 1970; Macko, Zlocha 1971; Varga et al. 1977; Kilík 1992; Slavkay et al. 2004).

Variabilné zastúpenie metabázických hornín odzrkadľuje diverzitu zloženia protolitu a rôznu intenzitu metamorfných podmienok od fácie zelených bridlíc po fáciu modrých bridlíc počas pôsobenia prográdneho a retrográdneho režimu (Ivan, Kronome 1996; Mazzoli, Vozárová 1998). Účinkom regionálnej metamorfózy rekryštalizovali tufitické polohy na dominantne zastúpenú zmes chloritu a epidotu. Vozárová (1993) stanovila metamorfné podmienky dúbravského súvrstvia v nižnoslanskej depresii do fácie zelených bridlíc stredno- až vysokotlakového typu. Geotermobarometriu bazaltových metapyroklastík na základe minerálnej asociácie Act + Chl + Ep ± Ms ± Bt + Ab + Qtz stanovili Černák et al. (2005) na teplotu 500 °C pri priemernom tlaku 3.9 kbar. Koexistencia minerálov v mramoroch bola aproximovaná rovnicou 3Dol + 4Qtz + H₂O = Tlc + 3Cal + 3CO, (Černák 2005; Černák et al. 2005).

Zo svetlých sľúd, ktoré tvoria šupinky orientované súhlasne s plochou vrstevnatej bridličnatosti mramorov identifikovali Černák (2005) a Černák et al. (2005) muskovit s prechodom do alumoseladonitu. Chemické a izotopové zloženie mramorov dúbravského súvrstvia v rámci komplexnej porovnávacej štúdie skúmala Vozárová et al. (1995).

Záver

Mineralogický výskum mramorov, ktoré sú asociované s bazaltovými metapyroklastikami a chloritickými bridlicami, potvrdil určitú mieru interakcie silikátových fáz, ktoré sa podieľajú na ich zložení. Preukázaná bola chemická variabilita klinochlóru, ktorý sa vyskytuje ako v mramoroch, tak aj v bazaltových metapyroklastikách a dominantne v chloritických bridliciach. Mg-obohatené aktinolity až tremolity tvoria súčasť minerálnej asociácie mramorov a bazaltových metapyroklastík. Prítomnosť epidotu, titanitu, albitu a fluórapatitu sa potvrdila len v bazaltových metapyroklastikách. Talk bol identifikovaný len v mramoroch v asociácii s klinochlórom. Prítomnosť dolomitu sme v skúmaných vzorkách mramorov nepotvrdili, ale predpokladáme, že pri vzniku talku sa dolomit spotreboval bez zachovania prípadných reliktov.

vyjaaraje aep						
Analýza	1	2	3	4	5	6
FeO	0.32	0.16	0.15	0.18	0.21	0.29
MnO	0.11	0.10	0.09	0.08	0.18	0.14
MgO	0.56	1.09	0.95	1.11	0.61	0.48
CaO	54.55	54.32	54.86	54.54	54.58	55.03
CO ₂ *	43.74	43.97	44.27	44.18	43.79	44.03
Suma	99.27	99.64	100.32	100.09	99.36	99.97
Fe ²⁺	0.004	0.002	0.002	0.003	0.003	0.004
Mn ²⁺	0.002	0.001	0.001	0.001	0.003	0.002
Mg ²⁺	0.014	0.027	0.023	0.027	0.015	0.012
Ca ²⁺	0.980	0.969	0.973	0.969	0.979	0.982
Suma	1.000	1.000	1.000	1.000	1.000	1.000

Tabuľka 8 Reprezentatívne elektrónové mikroanalýzy kalcitu (hm. %) prepočítané na 1 atóm kyslíka (apfu). Symbol* vyjadruje dopočítanie CO₂.

Poďakovanie

Táto práca bola podporovaná Agentúrou na podporu výskumu a vývoja na základe zmluvy č. APVV-15-0050 a grantom VEGA 1/0151/19. Vyslovujeme poďakovanie recenzentom článku za podnetné pripomienky, ktoré prispeli k skvalitneniu rukopisu.

Literatúra

- ABONYI A (1971) Stratigraficko-tektonicky vývoj karbónu gemeríd západne od štítnického zlomu. Geol Práce Spr 57: 339-348
- ANDRUSOV D (1953) Vápence a bázické vyvreliny v paleozoiku Západných Karpát. Geol Zbor SAV IV, 3-4: 801-820
- ARMBRUSTER T, BONAZZI P, AKASAKA M, BERMANEC V, CHOPIN CH, GIERÉ R, HEUSS-ASSBICHLER S, LIEBSCHER A, MEN-CHETTI S, PAN Y, PASERO M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18: 551-567
- BAČÍK P, ŠTEVKO M, OZDÍN D, VANČOVÁ I (2013) Názvy minerálov amfibolovej a hydrotalkitovej superskupiny podľa klasifikácií schválených IMA. Esemestník. Spravodajca Slovenskej mineralogickej spoločnosti 2/1: 14-17
- BAJANÍK Š (ED.), IVANIČKA J, MELLO J, PRISTAŠ J, REICHWALDER P, SNOPKO L, VOZÁR J, VOZÁROVÁ A (1984) Geologická mapa Slovenského rudohoria, východná časť 1: 50 000. ŠGÚDŠ Bratislava
- ČERNÁK V (2005) Petrológia a litológia mramorov dúbravského súvrstvia. Diplomová práca. Manuskript: archív Katedry mineralógie a petrológie Prírodovedeckej fakulty UK, Bratislava, 68 s
- ČERNÁK V, VOZÁROVÁ A, DYDA M (2005) Petrológia a litológia mramorov a bazaltových metatufov dúbravského súvrstvia príkrovu Bôrky. Zborník referátov z konferencie Geochémia 2015. Slovenská asociácia geochemikov, Katedra geochémie PriF UK, ŠGÚDŠ, Bratislava, 64-67
- FUSÁN O (1959) Poznámky k mladšiemu paleozoiku gemeríd. Geol Práce Zoš 55: 171-181
- GAZDAČKO Ľ (2005) Litologická náplň a vzťah bôrčanského príkrovu v okolí Markušky a Kobeliarova k ultrabázikám. Miner Slov 37, 3: 214-216
- HAWTHORNE C F, OBERTI R, HARLOW G, MARESCH V W, SCHU-MAHER C J, WELCH M (2012) Nomenclature of the amphibole supergroup. Am Mineral 97: 2031-2048

- IVAN I, KRONOME B (1996) Predmetamorfný charakter a geodynamické prostredie vzniku vysokotlakovo metamorfovaných bazitov meliatskej jednotky na lokalitách Radzim, Bôrka, Hačava a Rudník. Miner Slov 28(1): 26-37
- IVAN P (2007) Litostratiografické jednotky príkrovu Bôrky: ich stručná charakteristika a možný pôvod. Zborník príspevkov z konferencie Cambelove dni 2007 - Geochémia v súčasných geologických vedách. Slovenská asociácia geochemikov, Katedra geochémie PriF UK, Bratislava, 42-48
- KAMENICKÝ J (1957) Serpentinity, diabázy a glaukofanické horniny triasu Spišsko-gemerského rudohoria. Geol Práce Zoš 45: 3-108
- KANTOR J (1955) Diabázy juhoslovenského mezozoika. Geol Práce Zoš 41: 77-99
- KANTOR J (1956) Serpentinity južnej časti Spišsko-gemerského rudohoria. Geol Práce Zpr 6: 3-40
- KILÍK J (1992) Markuška záverečná správa, surovina: dekoračný a stavebný kameň, vyhľadávací prieskum, stav k 31.12.1991. MS, Geofond - archív ŠGÚDŠ, Bratislava, 85 s
- LEAKE B E, WOOLLEY A R, ARPS C E S, BIRCH W D, GILBERT M C, GRICE J D, HAWTHORNE F C, KATO A, KISCH H J, KRIVOVICHEV V G, LINTHOUT K, LAIRD J, MANDARINO J A, MARESCH W V, NICKEL E H, SCHUMACHER J C, SMITH D C, STEPHENSON N C N, UNGARETTI L, WHITTAKER E J W, YOUZHI G (1997) NOMENCIATURE OF AMPHIBOLES. CAN Mineral 35: 219-246
- LEŠKO B, VARGA I (1980) Alpine elements in the West Carpathian structure and their significance. Miner Slov 12(2): 97-130
- ΜΑCKO J, ZLOCHA J (1971) Inventarizácia ložísk stavebných nerastných surovín ČSSR, list mapy M-34-113-D Dobšiná, stav k 1.9.1971. MS, Geofond - archív ŠGÚDŠ, Bratislava
- MARKO F (1981) Geologicko-tektonické pomery na území medzi Roštárom a Markuškou. Diplomová práca. MS, Geofond - archív ŠGÚDŠ, Bratislava, 70 s
- Mazúr E, Lukniš M (1980) Geomorfologické jednotky (mapa 1: 500 000). In: Mazúr E, Jakál J (eds.): Atlas SSR. SAV a Slov úrad geod a kart Bratislava, 54-55
- MAZZOLI C, VOZÁROVÁ A (1998) Subduction related processes in the Bôrka Nappe (Inner Western Carpathians): a geochemical and petrological approach In: Rakús M (ed.): Geodynamic model of the Western Carpathians Monography, D. Štúr Publ. Bratislava, 89-106

- MELLO J (ED.), ELEČKO M, PRISTAŠ J, REICHWALDER P, SNOPKO L, VASS D, VOZÁROVÁ A, GAÁL Ľ, HANZEL V, HÓK J, KOVÁČ P, SLAVKAY M, STEINER A (1997) Vysvetlivky ku geologickej mape Slovenského krasu 1: 50 000. ŠGÚDŠ, Bratislava, 255 s
- Mello J, Reichwalder P, Vozárová A (1998) Bôrka Nappe: high-pressure relic from the subduction-accretion prism of the Meliata ocean (Inner Western Carpathians, Slovakia). Slovak Geol Mag 4(4): 261-273
- Ozdín D, UHER P (2002) Slovenské názvy minerálov. Minerály schválené Medzinárodnou mineralogickou asociáciou do konca roku 2001. ŠGÚDŠ, Bratislava, 1-203
- PLAŠIENKA D, MÉRES Š, IVAN P, SÝKORA M, SOTÁK J, LAČNÝ A, AUBRECHT R, BELLOVÁ S, POTOČNÝ T (2019) Meliatic blueschists and their detritus in Cretaceous sediments: new data constraining tectonic evolution of the West Carpathians. Swiss J Geosci 112(1): 55-81
- REICHWALDER P (1970) Niekoľko poznámok k výskytu glaukofanických hornín v okolí Hačavy. Geol Práce Spr 53: 157-165
- REICHWALDER P (1973) Geologické pomery mladšieho paleozoika v jv. časti Spišsko-gemerského rudohoria. Zbor Geol Vied ZK 18: 99-141
- SIIVOLA J, SCHMID R (2007) List of mineral abbreviations. IN: FETTES D, DESMONS J (EDS.): Metamorphic rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences. Subcommision on the Systematics of Metamorphic Rocks. Cambridge University Press, 93-110

- SLAVKAY M (ED.), BEŇKA J, BEZÁK V, GARGULÁK M, HRAŠKO Ľ, KOVÁČIK M, PETRO M, VOZÁROVÁ A, HRUŠKOVIČ S, KNÉSL J, KNÉSLOVÁ A, KUSEIN M, MAŤOVÁ V, TULIS J (2004) Ložiská nerastných surovín Slovenského rudohoria. Zv. 2. ŠGÚDŠ, Bratislava, 286 s
- SNOPKO L (1957) Predbežné výsledky štúdia stratigrafie karbónskych súvrství v povodí rieky Slanej. Geol Práce Zpr 11: 38-47
- SUCHÁR A, NOVYSEDLÁK J, VALKO P (1970) Jelšava Rožňava. Záverečná správa a výpočet zásob, surovina: stavebný a dekoračný kameň, etapa: VP, stav: 1.4.1970. MS, Geofond - archív ŠGÚDŠ, Bratislava, 59 s
- VARGA I, DOJČÁKOVÁ V, BUKVOVÁ J (1977) Gemer záverečná správa, štúdia, surovina: dekoračný kameň, stav: december 1977. MS, Geofond - archív ŠGÚDŠ, Bratislava, 94 s
- Vozárová A (1993) Stupeň premeny dúbravských vrstiev. In: Rakús M, Vozár J (eds.) Geodynamický model a hlbinná stavba Západných Karpát. ŠGÚDŠ, Bratislava, 227-231
- VozáRová A, ĎURKOVIČOVÁ J, REPČOK I (1995) Data on chemical and isotope composition of Carboniferous and Mesozoic carbonates of Inner Western Carpathians. Slovak Geol Mag 2: 127-152
- ZANE A, WEISS Z (1998) A procedure for classifying rockforming chlorites based on microprobe data. Rend Fis Acc Lincei 9(1): 51-56