ISSN

print 2570-7337
online 2570-7345

Výskyt asociace Hg a Tl selenidů na opuštěném uranovém ložisku Zálesí v Rychlebských horách (Česká republika)

An occurrence of Hg and Tl selenides association at the abandoned uranium deposit Zálesí, Rychlebské hory Mountains (Czech Republic)


Klíčová slova

Abstrakt

A unique mineral association with Hg and Tl selenides in quartz gangue was found at the abandoned uranium deposit Zálesí, Rychlebské hory Mountains, Czech Republic.

Tiemannite forms abundant irregular aggregates up to 1 mm in size, its chemical composition corresponds to the empirical formula (Hg0.97Cu0.02Cd0.01)Σ1.00(Se1.00S0.01)Σ1.01. Three types of hakite were determined on the base of chemical composition. Hg-rich hakite occurs as aggregates up to 700 μm in size and intensively altered tiemannite or as irregular grains up to 100 μm in tiemannite aggregates, its empirical formula is (Cu9.22Ag0.46)Σ9.68 (Hg1.96Zn0.02)Σ1.98 (Sb4.09As0.26)Σ4.35 (Se12.89S0.09)Σ12.98. Ag-rich hakite was found only rarely as irregular grains up to 50 μm in size, its empirical formula can be expressed as (Cu7.26Ag1.94)Σ9.20Hg1.92 (Sb4.07As0.32)Σ4.39 (Se12.44S1.06)Σ13.50. Rare Cd-rich hakite forms irregular grains up to 100 μm, its chemical analyses correspond to the empirical formula (Cu9.24Ag0.76)Σ10.00(Cd0.61Hg0.61Cu0.49Fe0.02)Σ1.73 (Sb3.88As0.17Bi0.05)Σ4.10 (Se11.57S1.60)Σ13.17. Bukovite was found as rare crystals up to 20 μm in size in hakite aggregates or grains up to 30 μm in size in clausthalite or up to 10 μm in size in klockmannite. Its chemical composition corresponds to the empirical formula (Tl1.98Pb0.01)Σ1.99(Cu2.97Ag0.01)Σ2.98 Fe0.97(Se3.75S0.32)Σ4.07. A new unnamed Ag-Cu-Tl selenide with the ideal formula AgCu5TlSe4 forms rare irregular grains up to 80 μm in size in umangite or tiemannite aggregates. Its empirical formula can be expressed as Ag1.09Cu4.97Tl0.94Se4.00. Naumannite was found as aggregates up to 200 μm in size, in some cases intensively altered klockmannite, its chemical analyses corresponds to the empirical formula (Ag2.00Cu0.02)Σ2.02Se0.98. Eucairite was found as grains up to 200 μm in size, in some cases its grains are altered by umangite, its empirical formula is Ag1.01Cu1.02Se0.97. A new unnamed Ag-Cu-Bi selenide with the ideal formula Ag4Cu3BiSe5 occurs as oval aggregates up to 100 μm in length in eucairite aggregates. Its chemical composition corresponds to the empirical formula Ag3.91(Cu3.07Tl0.01)Σ3.08Bi1.02(Se4.91S0.08)Σ4.99. A new unnamed Ag-Cu selenide with the ideal formula AgCu3Se3, was found as aggregates up to 40 μm replacing older klockmannite. Its empirical formula can be expressed as Ag1.07Cu2.90 (Se2.73S0.29)Σ3.02. Clausthalite forms in studied samples only rare relics up to 300 μm intesively replaced by supergene molybdomenite, its chemical analyses corresponds to the empirical formula (Pb0.98Ag0.01Bi0.01Tl0.01)Σ1.01Se0.99. Eskebornite occurs as supergene altered aggregates up to 50 μm in size, its empirical formula is Cu1.06Fe0.95(Se1.79S0.21)Σ2.00. Klockmannite was found as irregular aggregates up to 200 μm in size, partly replaced by naumannite or unnamed Ag-Cu selenide, its empirical formula can be expressed as (Cu0.99Ag0.02)Σ1.01(Se0.93S0.06)Σ0.99. Umangite forms irregular aggregates up to 100 μm in size, which partly replaced older eucairite and an unnamed Ag-Cu-Tl selenide, its empirical formula is Cu3.01(Se1.95S0.03)Σ1.98. The studied selenide association was formed in the low temperature (below 112 oC) conditions and later it was strongly altered by supergene processes (origin of molybdomenite, chalcomenite, schmiederite, demesmaekerite, kasolite, hydrated U-Pb oxihydroxides and probably olsacherite).

Soubory

Abstrakt (PDF) - 207.11KB
Fulltext (PDF) - 2.70MB

Reference

Cimala Z. (1997) Po stopách průzkumu a těžby uranových ložisek na Moravě a východních Čechách. GEAM, Dolní Rožínka, 1-129.

Dolníček Z., Fojt B., Prochaska W., Kučera J., Sulovský P. (2008) Origin of the Zálesí U–Ni–Co–As–Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints. Miner. Dep. 44, 1, 81-97.

Foit F. F., Ulbricht M. E. (2001) Compositional variation in mercurian tetrahedrite-tennantite from the epithermal deposits of the Steeens and Pueblo Mountains, Harney County, Oregon. Can. Mineral., 39, 819-830.

Fojt B. (1972) Studium arzenidové mineralizace z lokality Zálesí ve Slezsku pomocí elektronové mikrosondy. Sbor. sympozia „Hornická Příbram ve vědě a technice“, sekce N, 447-470. Praha.

Fojt B. (1993) Minerály uranových ložisek v okolí Javorníka ve Slezsku. Sbor. V. min. cykl. sem., Aplik. mineral. při řeš. ekolog. probl., ČSPCH ČSVTS, 108 - 110. Praha.

Fojt B. a kolektiv (1971) Mineralogický a geochemický výzkum rudních ložisek a drobných výskytů kyzů a rud barevných kovů v oblasti východních a středních Sudet, ložiska Zálesí - Horní Hoštice - Bílá Voda - Lesní Čtvrť. MS, Závěrečná zpráva. Geofond, Praha.

Fojt B., Škoda R. (2005) Bi4Se3 a ikunolit-laitakarit z uranového ložiska Zálesí u Javorníku v Rychlebských horách. Čas. Morav. Muz., Geol., 90, 99-107. Brno.

Fojt B., Dolníček Z., Kopa D., Sulovský P., Škoda R. (2005) Parageneze hypogenní asociace z uranového ložiska Zálesí v Rychlebských horách. Čas. Slez. Muz., Ser. A 54, 223-280.

Frost R. L., Bahfenne S., Čejka J., Sejkora J., Plášil J., Palmer S. J. (2010a) Raman spectroscopic study of the hydrogen-arsenate mineral pharmacolite Ca(AsO3OH) . 2H2O - implication for aquifer and sediment remediation. J. Raman Spectrosc. 41, 1348-1352.

Frost R. L., Keeffe E. C., Čejka J., Sejkora J. (2009) Vibrational spectroscopic study of the arsenate mineral strashimirite Cu8(AsO4)4(OH)4.5H2O - relationship to other basic copper arsenates. Vibrat. Spectr. 50, 289-297.

Frost R. L., Reddy B. J., Sejkora J., Čejka J., Keeffe E. C. (2010b) Characterisation of the copper arsenate mineral strashimirite, Cu8(AsO4)4(OH)4.4H2O, by near infrared spectroscopy. J. Near Infrared Spectrosc. 18, 157-165.

Janata M., Zachař Z. (2007) Javornický uran. 1-96, Jan Škoda - Fortprint, Dvůr Králové nad Labem.

Johan Z., Kvaček M. (1971) La bukovite, Cu3+xTl2FeSe4-x, une nouvelle espèce minérale. Bull. Soc. fr. Minéral. Crist. 94, 529-533.

Johnson N. E., Craig J. R., Rimstidt J. D. (1986) Compositional trends in tetrahedrite. Can. Mineral., 24, 385-397.

Lynch J. V. G. (1989) Large-scale hydrothermal zoning reflected in the tetrahedrite-freibergite solid solution, Keno hill Ag-Pb-Zn district, Yukon. Can. Mineral. 27, 383-400.

Makovicky E., Johan Z., Karup-Møller S. (1980) New data on bukovite, thalcusite, chalcothallite and rohaite. N. Jb. Miner., Abh. 138, 122-146.

Mrázek Z., Novák M. (1984) Sekundární minerály uranu ze Zálesí a Horních Hoštic v Rychlebských horách, severní Morava. Čas. Morav. Muz., Vědy přír. 69, 7-35.

Paar W. H., Topa D., Roberts A. C., Criddle A. J., Amann G., Sureda R. C. (2002) The new mineral species brodtkorbite, Cu2HgSe2, and the associated selenide assemblage from Tuminico, Sierra de Cacho, La Rioja, Argentina. Can. Mineral. 40, 225-237.

Pauliš P., Zíma J. (1982) Sekundární minerály ložiska uranových rud Zálesí u Javorníka ve Slezsku. Čas. Slez. Muz., Sér. A 31, 129-148.

Pauliš P., Toegel V., Jebavá I. (2012) Kintoreit z ložiska uranových rud Zálesí v Rychlebských horách (Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 2, 223-225.

Pauliš P., Toegel V., Malíková R. (2014) Eulytin z ložiska uranových rud Zálesí v Rychlebských horách. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 22, 1, 120-122.

Plášil J., Sejkora J., Goliáš V. (2008): Kuprosklodowskit z uranového ložiska Zálesí u Javorníka v Rychlebských horách (Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 16, 2, 205-207.

Pluskal O. (1992) Československý uran. Uhlí, rudy, 40, 8, 259-267.

Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.

Sack R. O., Loucks R. R. (1985) Thermodynamic properties of tetrahedrite-tenantites: constraints on the interdependence of the Ag = Cu, Fe = Zn, Cu = Fe, and As = Sb exchange reactions. Am. Mineral., 70, 1270-1289.

Sejkora J., Macek I., Škácha P., Pauliš P., Toegel V. (2014) Association of Hg and Tl selenides from the uranium deposit Zálesí, Rychlebské hory Mountains, Czech Republic. Proceedings of the international symposium CEMC 2014, Skalský Dvůr, 128-129.

Sejkora J., Makovicky E., Topa D., Putz H., Zagler G., Plášil J. (2011) Litochlebite, Ag2PbBi4Se8, a new selenide mineral species from Zálesí, Czech Republic: description and crystal structure. Can. Mineral. 49, 639-650.

Sejkora J., Pauliš P., Malec J. (2004) Supergenní selenová mineralizace na uranovém ložisku Zálesí v Rychlebských horách. Bull. mineral. - petrolog. Odd. Nár. Muz. (Praha) 12, 174-179.

Sejkora J., Pauliš P., Škoda R. (2007): Uranové ložisko Zálesí v Rychlebských horách. Minerál 15, 4, 305-328.

Sejkora J., Pauliš P., Tvrdý J. (2008) Zálesí - eine interessante Mineralfundstelle an der tschechisch-polnischen Grenze. Lapis 33, 22-36.

Sejkora J., Plášil J., Litochleb J., Škácha P., Pavlíček R. (2012) Asociace selenidů s makroskopickým umangitem z opuštěného uranového ložiska Zálesí v Rychlebských horách (Česká republika). Bull. mineral. - petrolog. Odd. Nár. Muz. (Praha) 20, 2, 187-196.

Sejkora J., Řídkošil T., Šrein V. (1999) Zálesíite, a new mineral of the mixite group, from Zálesí, Rychlebské hory Mts., Czech Republic. N. J. Miner. Abh., 175, 2, 105-124.

Sejkora J., Škoda R., Pauliš P. (2006) Selenium mineralization of the uranium deposit Zálesí, the Rychlebské hory Mts., Czech Republic. Miner. Polonica, Spec. Papers, 28, 196-198.

Šuráň J., Veselý T. (1982) Malá uranová ložiska krystalinika Českého masivu, IV. část: Oblast východních Čech a Moravy. Geol. Hydrometalurg. Uranu, 6, 4, 3-50.

Topa D., Makovicky E., Sejkora J., Dittrich H (2010) The crystal structure of watkinsonite, Cu2PbBi4Se8, from the Zálesí uranium deposit, Czech Republic. Can. Mineral. 48, 1109-1118.