Selenidy z fluoritového ložiska Moldava v Krušných horách (Česká republika)
Selenides from the fluorite deposit Moldava, Krušné hory Mountains (Czech Republic)
Klíčová slova
Abstrakt
A mineral association of Pb, Ag and Bi selenides in carbonate - fluorite - quartz gangue was found at samples from the abandoned fluorite mine Moldava v Krušných horách (northern Bohemia, Czech Republic). The minerals from the clausthalite - galena solid solution are the most abundant; four their types were determined on the base of chemical composition and associations. The first occurs as fine-grained aggregates up to 2 mm in size and impregnations formed by irregular grains up to 100 μm across (some with naumannite) and rarely also idiomorphic crystals up to 5 μm in coffinite. It is clausthalite with S contents up to 0.14 apfu.
The second type forms grains up to 20 μm in association with native Ag, naumannite and Se-rich acanthite, it is clausthalite with S contents in the range 0.24 - 0.32 apfu. The third type is represented by aggregates up to 200 μm of Se-rich galena (to clausthalite) in association with bohdanowiczite and Ag-Pb-Cu-Bi-(Se,S) phase with Se contens in the range 0.38 - 0.48 apfu. The fourth type forms aggregates up to 100 μm across in association with aikinite and it is galena with Se contents in the range 0.17 - 0.45 apfu. Naumannite was found as aggregates up to 100 μm in size, its empirical formula can be expressed as Ag1.00(Se0.97S0.02)Σ0.99. Se-rich acanthite (0.11 - 0.49 apfu Se) occurs as grains up to 90 μm across in association with native Ag, naumannite and coffinite. S-rich bohdanowiczite forms aggregates up to 80 μm in size in association with Se-rich galena and Ag-Pb-Cu-Bi-(Se,S) phase; its chemical composition corresponds to the empirical formula (Ag1.05Pb0.01)Σ1.06Bi1.01(Se1.30S0.63)Σ1.93. Aikinite was found only rarely as grains up to 20 μm in association with Se-rich galena, its empirical formula is (Cu3.85Fe0.20)Σ4.05Pb4.04Bi3.95(S12.19Se0.45)Σ12.64. The aggregates of Ag-Pb-Cu-Bi-(Se,S) phase occurs in association with Se-rich galena and bohdanowiczite; its chemical composition is very variable; this phase is interpreted as submicroscopic (< 1 μm) intergrowths of aikinite and bohdanowiczite. The native silver forms grains up to 100 μm in association with naumannite, Se-rich acanthite and coffinite. The described mineral association was probably formed from two or more fluids exhibiting different fSe2/fS2 ratios and disequilibrium of system.
Soubory
Reference
Augé T., Petrunov R., Bailly L. (2005) On the origin of the PGE mineralization in the Elatsite porphyry Cu-Au deposit, Bulgaria: comparison with the Baula-Nuasahi complex, India, and other alkaline PGE-rich porphyries. Can. Mineral. 43, 1355-1372.
Banaś M., Atkin D., Bowles J. F. W., Simpson P. R. (1979) Definitive data on bohdanowiczite, a new silver bismuth selenide. Mineral. Mag. 43, 131-133.
Bindi L., Pingitore N. E. (2013) On the symmetry and crystal structure of aguilarite, Ag4SeS. Mineral. Mag. 77, 21-31.
Bondarenko S., Grinchenko O., Semka V. (2005) Au-Ag-Te-Se mineralization in the Potashnya gold deposit, Kocherov tectonic zone, Ukrainian Shield. Geochem., Mineral, Petrolog. 43, 20-24.
Coleman R. G. (1959) The natural occurrence of galena - clausthalite solid solution. Am. Mineral. 44, 166-174.
Cook N. J., Ciobanu C. L. (2001) Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typyfying fluid plume mineralization in a proximal skarn setting. Mineral. Mag. 65, 351-372.
Čech F., Vavřín I. (1978) Poubaite, PbBi2(Se,Te,S)4, a new mineral. N. Jb. Mineral., Mh. 9-19.
Čech F., Vavřín I. (1979) Součekite, CuPbBi(S,Se)3, a new mineral of the bournonite group. N. Jb. Mineral., Mh. 289-295
Fengl M. (1982) Minerogenetický výzkum starší polymetalické mineralizace žil směrů S-J (SSV-JJZ) a žil č. 0 (Nová) a O/A fluoritového ložiska Moldava v Krušných horách. MS, Dipl. práce, kat. lož. geol. PřF UK, Praha.
Fengl M. (1998a) Fluoritové ložisko Moldava. Uhlí, rudy, Geol. průzk. 1, 3-12.
Fengl M. (1998b) Mineralogické poměry některých fluoritových ložisek v ČR (2.). Minerál 6, 4, 243-252.
Fengl M. (1998c) Mineralogické poměry některých fluoritových ložisek v ČR (3.). Minerál 6, 6, 403-411.
Fengl M. (1999) Mineralogie těžených fluoritových ložisek (4). Minerál 7, 1, 38-53.
Fengl M., Jansa J., Novák F., Reichmann F. (1981) Mineralogie supergenní zóny fluoritového ložiska Moldava v Krušných horách. Sbor. geol. Věd, Technol. Geochem. 17, 107-125.
Fengl M. a kolektiv (1994) Moldava 1957-1994. Inform. text Rudných dolů s. p., závod Teplice, 1-22. Teplice.
Fengl M., Schellinger V. (1998) Vertikální a horizontální rozsah rozfárání těžených fluoritových ložisek. Rudné doly s. p., Příbram, provoz Teplice, 1-19. Teplice.
Förster H. J. (2005) Mineralogy of the U-Se-polymetallic deposit Niederschlema-Alberoda, Erzgebirge, Germany. IV. The continuous clausthalite-galena solid-solution series. N. Jb. Mineral., Abh. 181, 2, 125-134.
Förster H. J., Tischendorf, G., Rhede D. (2005) Mineralogy of the Niederschlema-Alberoda U-Se-polymetalic deposit, Erzgebirge, Germany. V. Watkinsonite, nevskite, bohdanowiczite and other bismuth minerals. Can. Mineral. 43, 899-908.
Chrt J. (1964) Moldava - důl Josef - fluoritové ložisko. Sbor. k Sjezdu Čs. spol. mineral. geol. 79-80, Teplice.
Johan Z., Picot P., Ruhlmann F. (1987) The ore mineralogy of the Otish Mountains uranium district, Quebec: skippenite, Bi2Se2Te, and watkinsonite, Cu6PbBi4(Se,S)8. Two new mineral species. Can. Mineral. 25, 625-638.
Kovalenker V. A., Plotinskaya O. Y. (2005) Te and Se mineralogy of Ozernovskoe and Prasolovskoe epithermal gold deposit, Kuril - Kamchatka volcanic belt. Geochem., Mineral, Petrolog. 43, 118-123.
Kratochvíl J. (1961) Topografická mineralogie Čech. Díl IV. NČSAV, Praha.
Kuznetsov S. K, Sokerina N. V., Filippov V. N., Sokerin M. Y., Zharkov V. A. (2012) Selenium minerals in gold-bearing veins of the North Ural. Doklady Earth Sciences 442, 148-151.
Liu H., Chang L. L. Y. (1994) Phase relation in the system PbS-PbSe-PbTe. Mineral. Mag. 58, 567-578.
Makovicky E., Makovicky M. (1978) Representation of composition in the bismuthinite-aikinite series. Can. Mineral. 16, 405-409.
Nesterov J. G., Begizov V. D., Zavjalov J. N., Krjukov V. K., Čvileva T. N. (1985) Pervaja nachodka bogdanovičita AgBiSe2 v SSSR. Zapisky Všesojuz. Miner. Obšč. 114, 212-216.
Novák F., Jansa J. (1981) Minerogenetický výzkum fluoritových ložisek Moldava a Harrachov. Inf. Zpr. Nerostné Suroviny, 3, 1-88. Kutná Hora.
Novák F., Jansa J., Fengl M. (1982) Nový výskyt selenidů na ložisku Moldava v Krušných horách. Čas. Mineral. Geol. 27, 3, 315.
Pauliš P., Dvořák Z., Jebavá I., Zeman M. (2013) Bariofarmakosiderit-Q z fluoritového ložiska Moldava v Krušných horách. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 21, 1, 74-77.
Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.
Pring A. (1998) Selenides and sulfides from Iron Monarch, South Australia. N. Jb. Mineral., Mh. 36-48.
Pringle G. J., Thorpe R. I. (1980) Bohdanowiczite, junoite and laitakarite from the Kidd creek mine, Timmins, Ontario. Can. Mineral. 18, 353-360.
Sejkora J. (1987) Supergenní mineralizace ložiska Moldava. Národní muzeum v Praze a Společnost přátel Národního muzea, 4, 1-12.
Sejkora J. (1994) Minerály ložiska Moldava v Krušných horách. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 2, 110-116.
Sejkora J., Fengl M. (1997) Moldava: Flussspatlagerstätte im böhmischen Erzgebirge. Lapis 10, 25-37.
Sejkora J., Řídkošil T. (1994) Tetrarooseveltite, β-Bi(AsO4), a new mineral species from Moldava deposit, the Krušné hory Mts., Northwestern Bohemia, Czech Republic. N. Jb. Miner., Mh. 4, 179-184.
Sejkora J., Čejka J., Šrein V. (2001) Pb-dominant members of crandallite group from Cínovec and Moldava deposits, Krušné hory Mts. (Czech Republic). J. Czech. geol. Soc. 46, 1, 53-68.
Sejkora J., Čejka J., Šrein V., Novotná M., Ederová J. (1998) Minerals of the plumbogummite - philipsbornite series from Moldava deposit, Krušné hory Mts., Czech Republic. N. Jb. Miner., Mh. 4, 145-163.
Schonwandt H. K. (1983) Interpretation of ore microstructures from a seleneous Cu-mineralization in South Greenland. N. Jb. Mineral., Abh. 146, 302-332.
Simon G., Essene E. J. (1996) Phase relations among selenides, sulfides, tellurides, and oxides. I. Thermodynamic properties and calculated equilibria. Econ. Geol. 91, 1183-1208.
Simon G., Kessler S. E., Essene E. J. (1997) Phase relations among selenides, sulfides, tellurides, and oxides. II. Application to selenide-bearing ore deposits. Econ. Geol. 92, 468-484.
Simpson D. R. (1964) The binary system PbS - PbSe. Econ. Geol. 59, 150-153.
Thorpe R. I., Pringle G. J., Plant A. G. (1976) Occurrence of selenide nad sulphide minerals of the Kidd Creek massive sulphide deposit, Timmins, Ontario. Geol. Surv. Canad. Paper, 76-1A, 311-317.
Wright H. D., Barnard W. M., Halbig J. B. (1965) Solid solution in the system ZnS-ZnSe and PbS-PbSe at 300 oC and above. Am. Mineral. 50, 1802-1815.
Xiong Y. (2003) Predicted equilibrium constants for solid and aqueous selenium species to 300 oC: application to selenium-rich mineral deposits. Ore Geol. Rev. 23, 259-276.
Zavjalov J. N. (1985) Ob izostrukturnosti bogdanovičita i volynskita. Zapisky Všesojuz. Miner. Obšč. 114, 434-440.
Zhuravkova T.V., Palyanova G. A., Kravtsova R. G. (2015) Physicochemical formation conditions of silver selenides at the Rogovik deposit, northeastern Russia. Geol. Ore Deposits 57, 313-330.