Nové údaje o supergénnych mineráloch z polymetalického ložiska Čavoj, Strážovské vrchy (Slovenská republika)
New data on supergene minerals from the Čavoj base metal deposit, Strážovské vrchy Mts. (Slovak Republic)
Klíčová slova
Abstrakt
An interesting association of supergene minerals represented by anglesite, aragonite, brianyoungite, cerussite, gypsum, hemimorphite, malachite, mimetite, pyromorphite and wulfenite was found at the Čavoj base metal deposit, Strážovské vrchy Mts., Slovak Republic. Brianyoungite occurs as white crystalline coatings and irregular to spherical aggregates, which consist of thin-tabular crystals up to 0.1 mm in size. It was found together with aragonite and gypsum on the surface of ore fragments at the dumps of Geschenk and Ferdinand shaft. The refined unit-cell parameters of brianyoungite from the powder X-ray data are: a 15.710(8) Å, b 6.273(7) Å, c 5.45(1) Å, V = 537(1) Å3. Cerussite is the most abundant supergene phase. It forms well developed colourless to white tabular or prismatic crystals up to 5 mm in size, associated together with anglesite, mimetite, pyromorphite and wulfenite. Its refined unit-cell parameters are: a 5.189(1) Å, b 8.507(2) Å, c 6.152(1) Å, V 271.56(9) Å3. Hemimorphite was identified at the dumps situated near Strieborná adit as white hemispherical crystalline aggregates up to 2 mm in the fissures of sphalerite-rich gangue. It is orthorhombic, space group Imm2 and the unit-cell parameters refined from X-ray powder diffraction data are: a 8.3634(8) Å, b 10.711(1) Å, c 5.1134(5) Å, and V 458.07(8) Å3. Mimetite is rare mineral and it occurs only at the Baniská area. It forms bright yellow to yellowish-green crystalline aggregates and crusts, which are composed by prismatic crystals up to 1 mm in size. Its unit-cell parameters refined from powder X-ray data are: a 10.236(10) Å, c 7.4126(9) Å and V 673(1) Å3. Mimetite from the Čavoj deposit contain only minor amounts of Ca (up to 0.33 apfu) and P (up to 0.39 apfu) with the empirical formula (average of 6 point analyses) corresponding to (Pb5.11Ca0.21)Σ5.32[(AsO4)2.77(PO4)0.23]Σ3.00Cl1.17 on the basis of P+As+V+Si+S=3 apfu. Pyromorphite was identified in several samples from the Ferdinand shaft dump as pale-green to pale-yellow prismatic crystals up to 2 mm in size, which are often grouped to the crystalline crusts and aggregates together with cerussite and wulfenite. The refined unit-cell parameters of pyromorphite are: a 9.986(8) Å, c 7.3528(3) Å and V 635.0(5) Å3. Only minor amounts of Ca (up to 0.19 apfu) and As (0.07 apfu) were detected in studied samples of pyromorphite and its empirical formula (average of 9 point analyses) is corresponding to (Pb4.97Ca0.10)Σ5.07[(PO4)2.95(AsO4)0.05]Σ3.00Cl1.15 on the basis of P+As+V+Si+S=3 apfu. Wulfenite is rare supergene phase at the studied locality (dump of Ferdinand shaft) and it occurs as well developed, orange pyramidal crystals up to 1 mm in size together with cerussite and pyromorphite. It is tetragonal, space group I41/a and its unit-cell parameters refined from X-ray powder diffraction data are: a 5.435(1) Å, c 12.1065(2) Å and V 357.59(9) Å3. Its chemical composition is close to the end member formula with only insignificant amounts of P and As (both up to 0.01 apfu) and empirical formula (average of 5 point analyses) corresponding to Pb1.00[(MoO4)0.98(AsO4)0.01(PO4)0.01]Σ1.00 on the basis of Mo+W+As+P=1 apfu. On the basis of detailed paragenetic study two principal associations of supergene minerals were distinguished at the Čavoj deposit: a) supergene phases (e.g. cerussite, hemimorphite, mimetite, pyromorphite or wulfenite) formed by in-situ decomposition of primary ore minerals in the supergene zone or b) supergene minerals of sub-recent origin, which were formed by the weathering of ore fragments in dump environment (e.g. aragonite, brianyoungite and gypsum).
Soubory
Reference
Antao S. M., Hassan I. (2009) The orthorombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can. Mineral. 47, 1245-1255.
Čík Š., Petrík I. (2012) Asociácia biotit-granát-sillimanit v granitoch S-typu: P-T podmienky kryštalizácie granitov Malej Magury, bratislavského masívu a Považského Inovca (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 2, 197-207.
Dai Y., Hughes J. M., Moore P. B. (1991) The crystal structures of mimetite and clinomimetite, Pb5(AsO4)3Cl. Can. Mineral. 29, 369-376.
Dyda M. (1990) Metamorphic processes in paragneisses from the Suchý and Malá Magura Mts. (The Western Carpathians). Geol. Zbor. Geol. carpath. 41, 315-334.
Hill R. J., Gibbs G. V., Craig J. R., Ross F. K., Williams J. M. (1977) A neutron diffraction study of hemimorphite. Zeit. Kristall. 146, 241-259.
Holec G. (1968) Správa o literárno-historickom výskume rudného baníctva na Hornej Nitre. MS, ŠGÚDŠ-Geofond, Bratislava, 1-47, i. č. 67236.
Hovorka D., Fejdi P. (1983) Garnets of peraluminous granites of the Suchý and Malá Magura Mts. (the Western Carpathians) - their origin and petrological significance. Geol. Zbor. Geol. carpath. 34, 103-115.
Chevrier G., Giester G., Heger G., Jarosch D., Wildner M., Zemann J. (1992) Neutron single-crystal refinement of cerussite, PbCO3, and comparison with other aragonite-type carbonates. Zeit. Kristall. 199, 67-74.
Jonas J. (1820) Ungerns Mineralreich orycto-geognostich und topographisch dargestellt. 1-414, Hartleben´s Verlag, Pesth.
Kahan Š. (1980) Strukturelle und metamorphe Charakteristik des Kristallins des Gebirges Strážovské Vrchy (Suchý and Malá Magura). Geol. Zbor. Geol. carpath. 31, 576-601.
Kantor M., Ďurkovičová J. (1977) Izotopy síry na barytových ložiskách Západných Karpát-čiastková záverečná správa. MS, ŠGÚDŠ-Geofond, Bratislava, 1-237, i. č. 41417.
Kozlovský M., Matherny M. (1960) Poznámky ku kryštalografii smithsonitu z Ochtinej. Acta geol. geogr. Univ. Comen,, Geol. č. 4, 31-40.
Laugier J., Bochu B. (2011) LMGP-Suite of Programs for the Interpretation of X-ray Experiments. http://www.ccp14.ac.uk/tutorial/lmgp.
Livingstone A., Champness P. E. (1993) Brianyoungite, a new mineral related to hydrozincite, from the north of England orefield. Mineral. Mag. 57, 665-670.
Lugli C., Medici N., Saccardo D. (1999) Natural wulfenite: structural refinement by single-crystal X-ray diffraction. N. Jb. Miner. Monat. 6, 281-288.
Luptáková J., Chovan M. (2003) Sekundárne minerály Pb-Zn ložiska Jasenie-Soviansko v Nízkych Tatrách. Miner. Slov. 35, 141-146.
Maheľ M. (1983) Vysvetlivky ku geologickej mape Strážovských vrchov v mierke 1:50 000. ŠGÚDŠ, Bratislava, 1-89.
Maheľ M. (1985) Geologická stavba Strážovských vrchov. 1-221, ŠGÚDŠ, Bratislava.
Mikoláš S., Komora J., Kandera K., Sandanus M., Šlepecký T., Januš J., Staňa Š., Očenáš D., Stupák J. (1995) Čavoj-Gápel-Ag, Pb, Zn rudy-vyhľadávací prieskum, stav k 31.3.1995. MS, ŠGÚDŠ-Geofond, Bratislava, 1-114, i. č. 82971.
Mikuš T., Chovan M., Pršek J., Šlepecký T. (2003) Hydrothermal siderite-basemetals vein mineralization in the vicinity of Čavoj, Suchý Mts. Slovak Geol. Mag. 9, 4, 207-216.
Mrázek Z., Ďuďa R. (1983) Sekundárne minerály oloveno-zinkového ložiska Mária-Margita v Ochtinej. Miner. Slov. 15, 129-140.
Okudera H. (2013) Relationships among channel topology and atomic displacements in the structures of Pb5(BO4)3Cl with B = P (pyromorphite), V (vanadinite), and As (mimetite). Am. Mineral. 98, 1573-1579.
Ozdín D., Uher P., Sliva Ľ., Orvošová M., Fejdi P., Šamajová E. (2001) Hemimorfit Zn4Si2O7(OH)2·H2O z jaskyne Zlomísk v Nízkych Tatrách. Miner. Slov. 33, 61-64.
Pauliš P. (1977) Dnešní stav některých nalezišť nerostů na Slovensku. Čas. Mineral. Geol. 22, 207-208.
Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.
Plášil J., Sejkora J., Čejka J., Škácha P, Goliáš V. (2009) Supergene mineralization of the Medvědín uranium deposit, Krkonoše Mountains, Czech Republic. J. Geosci. 54, 15-56.
Putiš M. (1982) Bemerkungen zu dem Kristallin in dem Bereich des Považský Inovec, Suchý und Kráľová hoľa. Geol. Zbor. Geol. carpath. 33, 191-196.
Repčok I., Ferenčíková E., Eliáš K., Rúčka I., Kovářová A., Sládková M., Wiegerová V. (1993) Izotopový a termometrický výskum Pb-Zn zrudnenia v okolí Čavoja. Miner. Slov. 25, 362-364.
Rieder M., Povondra P. (1961) Study of some supergene minerals from Poniky near Banská Bystrica, Slovakia. Acta Univ. Carol. Geol. č. 3, 147-162.
Secco L., Nestola .F, Dal Negro A. (2008) The wulfenite-stolzite series: centric or acentric structures? Mineral. Mag. 72, 987-900.
Sejkora J., Litochleb J., Strnad J., Kubica J. (2008) Supergenní mineralizace slivického pásma (žíla Karel) jv. od Příbrami, Česká republika. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 16, 1-10.
Sejkora J., Plášil J., Císařová I., Škoda R., Hloušek J., Veselovský F., Jebavá I. (2011) Interesting supergene Pb-rich mineral association from the Rovnost mining field, Jáchymov (St. Joachimsthal), Czech Republic. J. Geosci. 56, 257-271.
Sejkora J., Škovíra J., Čejka J., Plášil J. (2009) Cu-rich members of the beudantite-segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic. J. Geosci. 54, 355-371.
Schmidt S. (1877) Cerussit Selmeczről. Term. Füz. 1, 177-179.
Schmidt S. (1884) Pelsöcz-Ardó ásványairól. Term. Füz. 8, 84-92.
Schmidt S. (1885) Ueber die Minerale von Pelsöcz-Ardó. Z. Krist. 10, 202-210.
Šlepecký T., Sandanus M., Krištín J. (1992) Oloveno-zinková-strieborná mineralizácia v oblasti Čavoj-Gápeľ v kryštaliniku Suchého. In: Stříbrné minerální asociace v Československu. Donovaly-DT Ustí nad Labem, ČSVTS, 149-157.
Števko M., Bačík P., Ozdín D. (2010) Nové výsledky štúdia sekundárnych minerálov na hydrotermálnych ložiskách v Slovenskej republike pomocou práškovej rtg. difrakcie. Miner. Slov. 40, Geovestník, 253.
Števko M., Bálintová T. (2008) Nové nálezy sekundárnych minerálov na polymetalickom ložisku Mária-Margita pri Ochtinej. Minerál 3, 244-248.
Števko M., Malíková R. (2014) Supergénne minerály zo štôlne Juraj, Hodruša-Hámre (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 22, 261-268.
Števko M., Ozdín D. (2012) Supergénne striebro a akantit z polymetalického ložiska Jasenie-Soviansko v Nízkych Tatrách (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 47-51.
Števko M., Ozdín D., Bačík P., Pršek J., Gramblička R. (2008) Sekundárne minerály z polymetalickej mineralizácie pri Valaskej Belej, Slovenská republika. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha), 16, 177-184.
Takéuchi Y., Sasaki S., Joswig W., Fuess H. (1978) X-ray and neutron diffraction study of hemimorphite. Proc. Japan Acad. 54, 577-582.
Tokody L. (1926) Kristallographische Monographie der ungarischen Cerussite. Z. Krist. 63, 385-456.
Tóth M. (1882) Magyarország ásványai különös tekintettel termőhelyeik megállapítására. 1-509, Hunyadi Mátyás, Budapest.
Vilinovičová Ľ. (1990) Petrogenesis of gneisses and granitoids from the Strážovské vrchy Mts. Geol. Zbor. Geol. carpath. 41, 335-376.
Zepharovich V. (1859) Mineralogisches Lexicon für das Kaiserthum Österreich. Band I. 1-627, Wilhelm Braumüller, Wien.
Zepharovich V. (1873) Mineralogisches Lexicon für das Kaiserthum Österreich. Band II. 1-436, Wilhelm Braumüller, Wien.
Zipser Ch. A. (1817) Versuch eines topograhisch-mineralogischen Handbuches von Ungern. 1-440, Carl Friedrich Wigand, Oedenburg.