ISSN

print 2570-7337
online 2570-7345

Polytypism of cronstedtite from two localities in Mexico


DOI: https://doi.org/10.46861/bmp.32.177

Klíčová slova

Abstrakt

Cronstedtite from two Mexican localities: 1) San Antonio mine, 9th level, East camp, Santa Eulalia mining district, Aquiles Serdán Municipality, Chihuahua, Mexico (MSA in the following), 2) Francisco I. Madero Mine, Noria de los Gringos, Zacatecas, Mexico (FIM in the following), were studied by single-crystal X-ray diffraction using the four-circle diffractometer with area detector. The reciprocal space (RS) sections were generated by the diffractometer software in order to determine OD subfamilies (Bailey’s groups) A, B, C, D, and particular polytypes. In the samples from MSA the polytype 3T (Subfamily A) is the most frequent. Some crystals are affected by twinning by reticular merohedry with the 180° rotation as twinning operation (obverse-reverse twinning). The 2H2 polytype (subfamily D) occurs rarely. In the FIM sample, the 2H1 + 2H2 allotwins (subfamily D) are most frequent. In one sample, the rare 6T1 polytype (subfamily D) was detected. The 3T polytype is rare. The electron probe microanalysis showed broad similarites in composition of the studied cronstedtites, characterized by common lack of any substitutes except of low S (up to 0.02 apfu; at both sites), and Cl (up to 0.01 apfu, at FIM only).

Soubory

Abstrakt (PDF) - 148.10KB
Fulltext (PDF) - 1.51MB

Reference

Bailey SW (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays Clay Miner 17: 355-371. https://doi.org/10.1346/ccmn.1969.0170605

Bailey SW (1988) Polytypism of 1:1 layer silicates. Rev Mineral 19: 1-27

Bujnowski TJ, Guggenheim S, Kato T (2009) Crystal structure determination of anandite-2M mica. Am Mineral 94: 1144-1152. https://doi.org/10.2138/am.2009.3139

Camprubí A, González-Partida E, Torró L, Alfonso P, Canet C, Miranda-Gasca MA, Martini M, González-Sánchez F (2017) Mesozoic volcanogenic massive sulfide (VMS) deposits in Mexico. Ore Geol Rev 81(3): 1066-1083. https://doi.org/10.1016/j.oregeorev.2015.07.027

Canet C, Camprubí A, González-Partida E, Linares C, Alfonso P, Piñeiro-Fernández, F, Prol-Ledesma RM (2009a) Mineral assemblages of the Francisco I. Madero Zn-Cu-Pb-(Ag) deposit, Zacatecas, Mexico: Implications for ore deposit genesis. Ore Geol Rev 35(3-4): 423-435. https://doi.org/10.1016/j.oregeorev.2009.02.004

Canet C, Camprubí A, González-Partida E, Linares C, Alfonso P, Piñeiro-Fernández F, Prol-Ledesma RM (2009b) The Francisco I. Madero Zn-Cu-Pb-(Ag) deposit, Zacatecas, Mexico: Mineral chemistry and fluid inclusion data. J Geochem Explor 101(1): 20. https://doi.org/10.1016/j.gexplo.2008.12.016

Dornberger-Schiff K, Ďurovič S (1975a) OD-interpretation of kaolinite-type structure - I: symmetry of kaolinite packets and their stacking possibilities. Clays Clay Miner 23: 219-229. https://doi.org/10.1346/ccmn.1975.0230310

Dornberger-Schiff K, Ďurovič S (1975b) OD-interpretation of kaolinite-type structures - II: the regular polytypes (MDO-polytypes) and their derivation. Clays Clay Miner 23: 231-246. https://doi.org/10.1346/ccmn.1975.0230311

Ďurovič S (1981) OD-Charakter, Polytypie und Identifikation von Schichtsilikaten. Fortsch Mineral 59: 191-226

Ďurovič S (1997) Cronstedtite-1M and coexistence of 1M and 3T polytypes. Ceramics-Silikáty 41: 98-104

Filut MA, Rule AC, Bailey SW (1985) Crystal structure refinement of anandite-2Or, a barium and sulphur-bearing trioctahedral mica. Am Mineral 70: 1298-1308

Frondel C (1962) Polytypism in cronstedtite. Am Mineral 47: 781-783

Fuchs LH, Olsen E, Jensen KJ (1973) Mineralogy, mineral-chemistry, and ccomposition of the Murchison (CM) meteorite. Smithson Contrib Earth Sci 10: 1-39. https://doi.org/10.5479/si.00810274.10.1

Garvie LA (2021) Mineralogy of the 2019 Aguas Zarcas (CM2) carbonaceous chondrite meteorite fall. Am Mineral 106(12): 1900-1916. https://doi.org/10.2138/am-2021-7815

Giuseppetti G, Tadini C (1972) The crystal structure of 2O brittle mica: Anandite. Tscherm Min Petrol Mitt 18: 169-184. https://doi.org/10.1007/bf01134206

Hall SH, Guggenheim S, Moore P, Bailey SW (1976) The structure of Unst-type 6-layer serpentines. Can Mineral 14: 314-321

Hybler J, Sejkora J (2017) Polytypism of cronstedtite from Chyňava, Czech Republic. J Geosci 62: 137-146. https://doi.org/10.3190/jgeosci.239

Hybler J, Sejkora J, Venclík V (2016) Polytypism of cronstedtite from Pohled, Czech Republic. Eur J Mineral 28: 765-775. https://doi.org/10.1127/ejm/2016/0028-2532

Hybler J, Števko M, Sejkora J (2017) Polytypism of cronstedtite from Nižná Slaná, Slovakia. Eur J Mineral 29: 91-99. https://doi.org/10.1127/ejm/2017/0029-2582

Hybler J, Klementová M, Jarošová M, Pignatelli I, Mosser-Ruck R, Ďurovič S (2018) Polytypes identification in trioctahedral layer silicates by electron diffraction and application to cronstedtite mineral synthetized by iron-clay interaction. Clays Clay Mineral 66: 379-402. https://doi.org/10.1346/ccmn.2018.064106

Hybler J, Dolníček Z, Sejkora J, Števko M (2020) Polytypism of cronstedtite from Nagybörzsöny, Hungary. Clays Clay Mineral 68: 632-645. https://doi.org/10.1007/s42860-020-00102-9

Hybler J, Dolníček Z, Sejkora J (2021a) Polytypism of cronstedtite from Litošice, Czech Republic. J Geosci 66: 227-242. https://doi.org/10.3190/jgeosci.335

Hybler J, Dolníček Z, Sejkora J, Števko M (2021b) Polytypism of cronstedtite from Ouedi Beht, El Hammam, Morocco. Clays Clay Mineral 69: 702-734. https://doi.org/10.1007/s42860-021-00157-2

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (Armstrong JT, ed.). San Francisco Press, San Francisco: 104-106

Megaw PKM (2018) The Santa Eulalia mining district, Chihuahua, Mexico. Mineral Record 49(1): 4-184

Megaw PKM, Ruiz J, Titley S (1988) High-temperature, carbonate-hosted Ag-Pb-Zn(Cu) deposits of Northern Mexico. Econ Geol 83(8): 1856-1885. https://doi.org/10.2113/gsecongeo.83.8.1856

Mikloš D (1975) Symmetry and polytypism of trioctahedral kaolin-type minerals. MS, Ph.D. thesis. Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia 144 pp. (in Slovak).

Müller WF, Kurat G, Kracher A (1979) Chemical and crystallographical study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tscherm Min Petrol Mitt 26: 293-304. https://doi.org/10.1007/bf01089843

Pattiaratchi DB, Saari E, Sahama TG (1967) Anandite, a new barium iron silicate from Wilagedera, North Western Province, Ceylon. Mineral Mag 36: 1-4. https://doi.org/10.1180/minmag.1967.036.277.01

Pignatelli I, Mugnaioli E, Hybler J, Mosser-Ruck R, Cathelineau M, Michau N (2013) A multi-technique characterisation of cronstedtite synthetized by iron-clay interaction in a step by step cooling procedure. Clays Clay Miner 61: 277-289. https://doi.org/10.1346/ccmn.2013.0610408

Pignatelli I, Mugnaioli E, Marrocchi Y (2018) Cronstedtite polytypes in the Paris meteorite. Eur J Mineral 30(2): 349-354. https://doi.org/10.1127/ejm/2018/0030-2713

Pignatelli I, Mosser-Ruck R, Mugnaioli E, Sterpenich J, Gemmi M (2020) The effect of the starting mineralogical mixture on the nature of Fe serpentines obtained during hydrothermal syntheses at 90°C. Clays Clay Miner 68: 394-412. https://doi.org/10.1007/s42860-020-00080-y

Pouchou J, Pichoir F (1985) „PAP“ (jrz) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press. San Francisco

Rigaku Oxford Diffraction (2021) CrysAlisPro version 171.41.93a, Data collection and data reduction. GUI

Roche MJ, Fox-Powell MG, Hamp RE, Byrne JM (2023) Iron reduction as a viable metabolic pathway in Enceladus’ ocean. Int J Astrobiol 22(5): 539-558. https://doi.org/10.1017/s1473550423000125

Steadman R (1964) The structure of trioctahedral kaolin-type silicates. Acta Cryst 17: 924-927. https://doi.org/10.1107/s0365110x64002390

Steadman R, Nuttall PM (1963) Polymorphism in cronstedtite. Acta Cryst 16: 1-8. https://doi.org/10.1107/s0365110x63000013  

Steadman R, Nuttall PM (1964) Further polymorphism in cronstedtite. Acta Cryst 17: 404-406. https://doi.org/10.1107/s0365110x64000913  

Steinmann JJ (1820) Chemische Untersuchung des Cronstedtit’s, eines neuen Fossils von Příbram in Böhmen. Gottlieb Haase, Prague, 47 pp.

Steinmann JJ (1821) Chemische Untersuchung des Cronstedtit‘s, eines neuen Fossils von Příbram in Böhmen. J Chem Phys 32: 69-100

Tomeoka K, Buseck PR (1985) Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni. Geochim Cosmochim Acta 49(10): 2149-2163. https://doi.org/10.1016/0016-7037(85)90073-0

Vrba K (1886) Vorläufige Notiz über den Cronstedtit von Kuttenberg. Sitzungsberichte der Königlichen Böhmischen Gesselschaft der Wissenschaften 3: 13-19

Weiss Z, Kužvart M (2005) Clay minerals, their nanostructure and use. 1-281. Charles University, Karolinum publishing house, Prague (in Czech).

Zega TJ, Garvie LA, Buseck PR (2003) Nanometer-scale measurements of iron oxidation states of cronstedtite from primitive meteorites. Am Mineral 88(7): 1169-1172. https://doi.org/10.2138/am-2003-0726

Zolotov MY (2014) Formation of brucite and cronstedtite-bearing mineral assemblages on Ceres. Icarus 228: 13-26. https://doi.org/10.1016/j.icarus.2013.09.020

Zolotov MY, Mironenko MV (2013) On the formation of brucite and cronstedtite on Ceres. Meteorit Planet Sci Suppl 76: 5345