ISSN

print 2570-7337
online 2570-7345

Mineralogická charakteristika barytové mineralizace z lokality Ruda-hájenka (hornoměstský rudní revír, silezikum)

Mineralogy of baryte mineralization from the locality Ruda-hájenka (Horní Město Ore District, Silesicum, Czech Republic)


DOI: https://doi.org/10.46861/bmp.31.111

Klíčová slova

Abstrakt

The previously unknown remnants of old mining activity were recently found at the locality Ruda-hájenka in the SW part of the Horní Město Ore District (Northern Moravia, Czech Republic). Partly weathered fragments of baryte mineralization in association with acid metavolcanites of the Vrbno Group (Devonian, Silesicum) were found in the dump material. Baryte mineralization exhibits a fine-grained marble-like appearance and locally contains minor disseminated pyrite. A detailed mineralogical study also revealed the presence of trace amount of other hypogene sulphides (galena and sphalerite), whose chemical composition is similar to those reported from the Horní Město Ore District. In addition, baryte also contains individual grains or aggregates of quartz, K-feldspar, and muscovite, which are often corroded and replaced by baryte. The silicates contain negligible amount of Ba (up to 0.02 apfu), which is only slightly higher than those in the same mineral phases from the host metavolcanic rock. The isotope composition of sulphur in baryte and pyrite indicates at least two different sources of sulphur (marine sulphate and likely sulphur leached from wall rocks) and isotope disequilibrium between co-existing minerals. The texture and mineral composition of the studied mineralization resemble metamorphosed baryte mineralizations occurring in the wider area (including local stratiform baryte bodies), but the absence of elevated contents of Ba in feldspars and especially in mica contradicts with an idea of Variscan metamorphic re-crystallization of the studied mineralization together with its host rock environment under the greenschist facies conditions. Therefore, one cannot exclude the possibility that it can be a post-metamorphic vein mineralization, which experienced intense deformation and recrystallization at very low temperatures, associated with rejuvenation of fault-related tectonic activity. The supergene mineral phases are represented especially by limonite, less frequent are minerals of the hollandite group (hollandite, coronadite, cryptomelane), anglesite, cerussite, and a not very well identified Ce-mineral, most likely cerianite-(Ce). Supergene origin is also presupposed for rarely found acanthite.

Online 26.12.2023

Soubory

Abstrakt (PDF) - 191.90KB
Fulltext (PDF) - 1.77MB

Reference

Andersen AK, Clark JG, Larson PB, Donovan JJ (2017) REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA. Ore Geol Rev 89: 780-807. https://doi.org/10.1016/j.oregeorev.2017.06.025

Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance on the oxidation state of europium. Chem Geol 93: 219-230. https://doi.org/10.1016/0009-2541(91)90115-8  

Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Miner Petrol 45: 231-246. https://doi.org/10.1007/bf01163114

Biagioni C, Capalbo C, Pasero M (2013) Nomenclature tunings in the hollandite supergroup. Eur J Mineral 25: 85-90. https://doi.org/10.1127/0935-1221/2013/0025-2255

Cook NJ, Ciobanu CL, Wade BP, Gilbert SE, Alford R (2023) Mineralogy and distribution of REE in oxidised ores of the Mount Weld laterite deposit, Western Australia. Minerals 13(5): 656. https://doi.org/10.3390/min13050656  

de Baar HJW, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distributions in anoxic wa­ters of the Cariaco Trench. Geochim Cosmochim Acta 52: 1203-1220. https://doi.org/10.1016/0016-7037(88)90275-x

Dolníček Z (2004) Mineralogie a podmínky vzniku fluoritových a barytových mineralizací brunovistulika. MS, disert. práce, PřF MU Brno.

Dolníček Z, Nepejchal M (2019) Sylvanit, clausthalit a doprovodné minerály ze železnorudného ložiska typu Lahn-Dill Pittenwald u Skal u Rýmařova. Bull Mineral Petrolog 27: 82-88

Dolníček Z, Slobodník M (2002) Mineralogie a geneze rudního výskytu od Nectavy. Sborník „Mineralogie Českého masivu a Západních Karpat“: 9-13. PřF UP Olomouc

Dolníček Z, Skácel J, Nepejchal M (2019) Nové poznatky o stříbronosné žilné mineralizaci Zn-Pb ložiska Horní Město (vrbenská skupina silezika). Bull Mineral Petrolog 27(2): 279-289

Dolníček Z, Slobodník M, Malý K (2003) Metamorfovaná barytová mineralizace z lomu v Dolních Loučkách u Tišnova. Geol Výzk Mor Slez v r 2002, 10: 66-68

Elderfield H, Hawkesworth CJ, Greaves MJ, Calvert SE (1981) Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim Cosmochim Acta 45: 513-528. https://doi.org/10.1016/0016-7037(81)90184-8

Filimonova LG, Sivtsov AV, Trubkin NV (2010) Manganese oxides and associated minerals as constituents of dispersed mineralization of metasomatic rocks in the Dukat ore field. Geol Ore Depos 52: 322-333. https://doi.org/10.1134/s1075701510040069

Fojt B, Dolníček Z, Hoffman V, Škoda R, Trdlička Z, Zeman J (2007a) Paragenetická charakteristika ložisek Zn-Pb rud v širším okolí Horního Města u Rýmařova (Nízký Jeseník). Acta Mus Moraviae, Sci geol 92: 3-57

Fojt B, Dolníček Z, Hladíková J, Škoda R, Zeman J (2010) Paragenetická charakteristika ložisek Zn-Pb a Fe rud u Horního Benešova v Nízkém Jeseníku. Část I.: Ložisko Zn-Pb rud. Čas Slez Muz Opava (A) 59(1): 1-58

Fojt B, Hladíková J, Kalenda F (2001) Zlaté Hory ve Slezsku, největší rudní revír v Jeseníkách. Část 2. Acta Mus Moraviae, Sci geol 86: 3-51

Fojt B, Vavrošová-Konečná J, Dolníček Z (2007b) Stručná charakteristika železnorudného výskytu Skály u Rýmařova, Nízký Jeseník. Čas Slez Muz Opava (A) 56: 1-22

Hladíková J, Kříbek B (1988) Distribution and isitopic composition of sulphidic sulphur in rocks of the north-eastern part of the Bohemian Massif. Čas Min Geol 33(2): 113-129

Hladíková J, Šmejkal V, Fojt B, Pertold Z, Aichler J (1990) Izotopické složení síry, uhlíku a kyslíku vybraných lokalit Jeseníků. Sbor geol věd, lož geol mineral 29: 141-165

Hoefs J (1997) Stable isotope geochemistry, 4th ed. Springer Verlag, Berlin-New York

Hutchinson M, Slezak P, Wendlandt R, Hitzman M (2022) Rare earth element enrichment in the weathering profile of the Bull Hill carbonatite at Bear Lodge, Wyoming, USA. Econ Geol 117(4): 813-831. https://doi.org/10.5382/econgeo.4900

Kolitsch U (2017) Braunit, Cerianit-(Ce), Kryptomelan und weitere Mineralien in einer metamorphen Manganerzprobe von der Dorfer Alpe bei Prägraten, Osttirol. In: Walter, F. et al.: Neue Mineralfunde aus Österreich LXVI. Carinthia II, 207/127: 217-284

Kolitsch U, Pristacz H, jr. (2013) Cerianit und Hollandit von Adnet, Salzburg. In: Niedermayr G. et al.: Neue Mineralfunde aus Österreich LXII. Carinthia II, 203/123: 91-146

Kolitsch U, Schachinger T, Bernhard F (2015) Ardennite-(As), ardennite-(V), gasparite-(Ce) and chernovite-(Y): first results of a mineralogical study of the metaradiolarite-hosted manganese ore mineralisations in the Fuchssee area, Radstadt Tauern, Salzburg, Austria. Mitt Österr Mineral Ges 161: 67

Kruťa T (1966) Moravské nerosty a jejich literatura 1940-1965. Moravské muzeum Brno

Maydagán L, Franchini M, Impiccini A, Lentz D (2016) Phyllosilicates geochemistry and distribution in the Altar porphyry Cu-(Au) deposit, Andes Cordillera of San Juan, Argentina: Applications in exploration, geothermometry, and geometallurgy. J Geoch Explor 167: 83-109. https://doi.org/10.1016/j.gexplo.2016.05.002

Novák J (1987) Báňsko-historický výzkum. MS, Geologický průzkum n. p., geologické středisko Rýmařov    

Novotný P, Zimák J (2001) Barnatý muskovit a barnatý flogopit v metamorfitech a rudách Zlatohorského rudního revíru. Geol Výzk Mor Slez v r. 2000: 79-81

Piper DZ (1974) Rare earth elements in ferromanganese nodules and other marine phases. Geochim Cosmo­chim Acta 38: 1007-1022. https://doi.org/10.1016/0016-7037(74)90002-7

Pouchou J, Pichoir F (1985) „PAP“ (jrZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press. San Francisco

René M, Šrein V (2001) Chloritoid schists of the Hrubý Jeseník Mts. Acta Univ Palack Olom, Fac Rer Nat, Geol 37: 37-45

Rieder M, Cavazzini G, D´yakonov YS, Kamenetskii VAF, Gottardi G, Guggenheim S, Koval´ PV, Mueller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Can Mineral 36: 905-912. https://doi.org/10.1180/minmag.1999.063.2.13

Roy S (1992) Environments and processes of manganese deposition. Econ Geol 87: 1218-1236

Souček J (1978) Metamorphic zones of the Vrbno and Rejvíz series, the Hrubý Jeseník Mountains, Czechoslovakia. Tscherm Min Petr Mitt 25: 195-217. https://doi.org/10.1007/bf01081420

Souček J, Jelínek E (1973) Celsian z kvarcitu ze Zlatých Hor. Acta Univ Carol, Geol, Rost Vol, 1-2: 97-109

Staňková J (1995) Gahnit, cymrit a celsian z Horního Města. Minerál 3(6): 382

van Rythoven AD, Pfaff K, Clark JG (2020) Use of QEMSCAN® to characterize oxidized REE ore from the Bear Lodge carbonatite, Wyoming, USA. Ore Energ Res Geol 2-3: 1-18. https://doi.org/10.1016/j.oreoa.2020.100005

Volokhin YuG, Khanchuk AI, Mikhailik PE, Mikhailik EV (2020) Mineral composition of manganese crusts from Belyaevskii Volcano (Sea of Japan). Dokl Earth Sci 491: 214-219. https://doi.org/10.1134/s1028334x20040200