Krystalograficky orientovaný srůst rutilu a ilmenitu a doprovodné minerály z Pasek nad Jizerou (krkonošsko-jizerské krystalinikum)
Crystallographically oriented intergrowth of rutile and ilmenite and associated minerals from Paseky nad Jizerou (Krkonoše-Jizera Crystalline Complex, Czech Republic)
Klíčová slova
Abstrakt
A detailed mineralogical study of a sample of quartz gangue containing macroscopically visible acicular rutile, which was collected in area of former Cu(-Ag) ore deposit NE from Paseky nad Jizerou, yielded a number of mineralogical findings. The mineralization is bound to strongly elongated quartz lenses, arranged conformably with schistosity of host phyllite of the Krkonoše-Jizera Crystalline Complex. Rutile is polysynthetically lamelled and compositionally zoned, with elevated contents of Fe (0.004 - 0.015 apfu), Nb (0.001 - 0.004 apfu), V (0.001 - 0.002 apfu) and W (0.000 - 0.006 apfu). It contains microscopic platy inclusions of ilmenite, which are regularly distributed in up to three crystallographic directions (probably cleavage planes) regardless of compositional zoning of host rutile. In addition, sporadic occurrence of aggregates composed of fluorapatite, phengitic muscovite and clinochlore was found too. The studied mineralization has metamorphic-secretory origin. The observed microstructural arrangement of inclusions of ilmenite in rutile host is very uncommon worldwide. With respect to evidently LP-LT origin of mineralization, we interpret its origin not in terms of exsolution but in terms of younger hypogene alteration of pre-existing rutile by fluids with relatively low Eh. The activity of such “suitable” fluids can be illustrated during crystallization of chlorite, which was formed at temperatures 137 - 160 °C and at log fO2 between -49.2 and -53.1 bar.
Soubory
Reference
Basta EZ (1959) New data on the system Fe2O3-FeTiO3 -TiO2 (ferriilmenites and titanomaghemites). Proc Egypt Acad Sci 14: 1-15
Bayliss P (1975) Nomenclature of the trioctahedral chlorites. Can Mineral 13: 178-180
Bernard JH (1981) Minerály rudonosných hydrotermálních procesů - Český masív. In: Bernard JH, Čech F, Dávidová Š, Dudek A, Fediuk F, Hovorka D, Kettner R, Koděra M, Kopecký L, Němec D, Paděra K, Petránek J, Sekanina J, Staněk J, Šímová M (eds.) Mineralogie Československa: 186-343. Academia Praha
Černý P, Chapman R, Simmons WB, Chackowsky LE (1999) Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: Solid solution, exsolution, and oxidation. Am Miner 84: 754-763 https://doi.org/10.2138/am-1999-5-607
Dixon A, Cempírek J, Groat LA (2014) Mineralogy and geochemistry of pegmatites on Mount Begbie, British Columbia. Can Mineral 52(2): 129-164 https://doi.org/10.3749/canmin.52.2.129
Durazzo A, Taylor LA (1982) Experimental exsolution textures in the system bornite-chalcopyrite: genetic implications concerning natural ores. Miner Deposita 17: 79-97 https://doi.org/10.1007/bf00206377
Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. In: Lindsley DH (ed): Oxide Minerals: Petrologic and Magnetic Significance. Reviews in Mineralogy, 25: 1-9. Mineralogical Society of America, Washington, D.C. https://doi.org/10.1515/9781501508684-004
Cháb J, Vrána S (1979) Crossite-actinolite amphiboles of the Krkonoše-Jizera crystalline complex and their geological significance. Věst Ústř Úst Geol 54: 143-150
Chaloupský J, Červenka J, Jetel J, Králík F, Líbalová J, Píchová E, Pokorný J, Pošmourný K, Sekyra J, Shrbený O, Šalanský K, Šrámek J, Václ J (1989) Geologie Krkonoš a Jizerských hor. ČGÚ Praha
Inoue A, Inoué S, Utada M (2018) Application of chlorite thermometry to estimation of formation temperature and redox conditions. Clay Miner 53: 143-158 https://doi.org/10.1180/clm.2018.10
Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82: 1898-1911. https://doi.org/10.2113/gsecongeo.82.7.1898
Kratochvíl J (1962) Topografická mineralogie Čech V (O-Ř). Nakladatelství ČSAV. Praha.
Kryza R, Mazur S (1995) Contrasting metamorphic paths in the SE part of the Karkonosze-Izera block (Western Sudetes, SW Poland). N Jahrb Mineral, Abh 169: 157-192 https://doi.org/10.1127/njma/170/1995/59
Liu L, Zhang J, Green HV, Jin Z, Sun Y (2004) UHP ilmenite exsolution from ironbearing rutile in eclogite from the Altyn Tagh, NW China. In: AGU Fall Meeting, 2004(12): 13-17. San Francisco
Melka K (1965) Návrh na klasifikaci chloritových minerálů. Věst Ústř Úst geol 40: 23-27.
Patel SC, Ravi S, Anilkumar Y, Naik A (2009) Mafic xenoliths in Proterozoic kimberlites from Eastern Dharwar Craton, India: Mineralogy and P-T regime. J Asian Earth Sci 34(3): 336-346 https://doi.org/10.1016/j.jseaes.2008.06.001
Pouchou J, Pichoir F (1985) „PAP“ (Z) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press. San Francisco
Ramdohr P (1980) The ore minerals and their intergrowths. Pergamon Press, Oxford. 1-1205
Rudnick RL, Barth M, Horn I, McDonough WF (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287: 278-281 https://doi.org/10.1126/science.287.5451.278
Stormer JCJr, Pierson MJ, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis. Am Mineral 78: 641-648
Žáčková E, Konopásek J, Jeřábek P, Finger F, Košler J (2010) Early Carboniferous blueschist facies metamorphism in metapelites of the West Sudetes (Northern Saxothuringian Domain, Bohemian Massif). J Metamorph Geol 28: 361-379 https://doi.org/10.1111/j.1525-1314.2010.00869.x