REE minerály fenitů čistecko-jesenického masivu (Česká republika)
REE minerals of fenites from the Čistá-Jesenice Pluton (Czech Republic)
Klíčová slova
Abstrakt
Alkaline metasomatites (fenites) originated by pervasive Na metasomatism of granitoids of the Čistá-Jesenice Pluton (belonging to the Teplá-Barrandian unit in the NW part of the Bohemian Massif) contain a rich association of REE-bearing minerals. The occurrence of REE carbonates (bastnäsite, parisite), monazite, rhabdophane, churchite, fergusonite and pyrochlore was found in relatively weakly altered rocks (typical fenites), whereas much richer assemblage was observed in rocks which underwent the strongest metasomatism (so called reomorphic cancrinite-nepheline syenites). Here, the mineral assemblage includes in addition to all above mentioned minerals also xenotime and REE silicates, including tritomite/melanocerite, allanite, perbøeite, gadolinite and a Mn-analogue of hingganite. A common mineral phase is zircon in these rocks, too. Cerium, yttrium, and to lesser extent also lanthanum are dominating cations in the studied REE phases. A total of 24 mineral species was identified, including three unnamed phases. In most of the studied phases, the level of fractionation of REEs is high, exceptionally even extreme. Chondrite-normalized REE patterns of some phases are characterized by a pronounced M-type tetrad effect. The results of microprobe analyses suggest that individual minerals originated during several episodes, characterized by different chemical composition of the mineral-forming medium (especially with contrasting concentrations of strong REE-complexing ligands and oxygen fugacity) and/or temperature. We did not find any significant differences in chemistry of individual minerals present in various rock types showing different levels of metasomatic alteration. The obtained data are consistent with hydrothermal origin of most (if not all) reported REE-bearing phases. The material source and genesis of the studied REE+Nb+Zr mineralization was in all probability associated with hydrothermal activity in the exocontact of a deep-seated hypothetical carbonatite intrusion, as was suggested already in earlier works dealing with these remarkable rocks.
Soubory
Reference
Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53: 197-214. https://doi.org/10.1016/0016-7037(89)90286-X
Anenburg M, Mavrogenes JA, Frigo C, Wall F (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci Adv 6 (41), eabb6570: 1-10. https://doi.org/10.1126/sciadv.abb6570
Atencio D, Andrade M, Christy A, Gieré R, Kartashov P (2010). The pyrochlore supergroup of minerals: Nomenclature. Can Mineral 48: 673-698. https://doi.org/10.3749/canmin.48.3.673
Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance on the oxidation state of europium. Chem Geol 93: 219-230. https://doi.org/10.1016/0009-2541(91)90115-8
Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Miner Petrol 45: 231-246. https://doi.org/10.1007/BF01163114
Bonazzi P, Lepore GO, Bindi L, Chopin C, Husdal T, Medenbach O (2014) Perbøeite-(Ce) and alnaperbøeite-(Ce), two new members of the epidote-törnebohmite polysomatic series: Chemistry, structure, dehydrogenation, and clue for a sodian epidote end-member. Am Mineral 99: 157-169. https://doi.org/10.2138/am.2014.4593
Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23: 471-485. https://doi.org/10.1180/claymin.1988.023.4.13
ČGS (2021) Geologická mapa 1 : 50 000. In: Geovědní mapy 1 : 50 000 [online]. Praha: Česká geologická služba [cit. 2018-03-21]. Dostupné z: https://mapy.geology.cz/geocr50/
de Baar HJW, Greman CR, Elederfield H, Van Gaans P (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim Cosmochim Acta 52: 1203-1220. https://doi.org/10.1016/0016-7037(88)90275-X
Deer WA, Howie RA, Zussman J (2001) Rock-forming minerals, Vol. 4A, Framework Silicates: Feldspars. 2nd ed. The Geological Society, London
Dobeš P, Klomínský J, Čejková B, Jačková I, Lněničková Z (2018) Barytová mineralizace na kůzovské zlomové zóně v čistecko-jesenickém plutonu: studium fluidních inkluzí a stabilních izotopů. Geosci Res Rep 51: 141-147
Dolníček Z, Ulmanová J (2019) Mineralogická charakteristika dvou typů hydrotermálních žil s obsahem REE minerálů z lomu u Vrbčan (kutnohorské krystalinikum). Bull Mineral Petrolog 27: 331-345
Elderfield H, Hawkesworth CJ, Greaves MJ, Calvert SE (1981) Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim Cosmochim Acta 45: 513-528. https://doi.org/10.1016/0016-7037(81)90184-8
Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Dowman E, Deady E (2018) Fenites associated with carbonatite complexes: A review. Ore Geol Rev 93: 38-59. https://doi.org/10.1016/j.oregeorev.2017.12.003
Franče J (2006) Závěrečná zpráva o výsledcích ložiskového průzkumu na lokalitě Čistá - Holubí vrch. Etapa ložiskového průzkumu: vyhledávací, nerostná surovina: živec. MS, Geoaktiv v.o.s., archiv ČGS Praha FZ006857
Chrt J, Jurák J, Kořán J, Krones J, Soukup B, Rössler J, Macourek K, Látal J, Tesař M, Václavek V, Kopecký L, Suková H, Váňa J, Drahoňovský R, Jeriová J (1985) Závěrečná zpráva úkolu Hůrky-Mo, surovina: Mo ruda, etapa průzkumu vyhledávací, stav ke dni 31. 10. 1985. MS, Geoindustria Praha, archiv ČGS Praha P030012
Chrt J, Apl J, Slezák L, Radimský V, Rössler, Tesař M, Suková H, Váňa J, Soukup B (1987a) Dílčí závěrečná zpráva úkolu Suroviny energeticky úsporné (01 86 1080), lokalita Hůrky. Surovina: nefelinický syenit. MS, Geoindustria, archiv ČGS Praha P045981
Chrt J, Jurák J, Apl J, Váňa, J, Slezák L, Kumstát J, Zelinková Z (1987b) Závěrečná zpráva úkolu Ověřování F-Ba anomálií v Českém masivu. 01 78 2304. MS, Geoindustria, archiv ČGS Praha GF P056546
Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63: 489-508. https://doi.org/10.1016/S0016-7037(99)00027-7
Jebrak M, Šmejkal V, Albert D (1985) Rare earth and isotopic geochemistry of the fluorite barite vein deposits from the Western Rouergue district (France). Econ Geol 80: 2030-2034. https://doi.org/10.2113/gsecongeo.80.7.2030
Kasatkin AV, Zubkova NV, Pekov IV, Chukanov NV, Škoda R, Polekhovsky YS, Agakhanov AA, Belakovskiy DI, Kuznetsov AM, Britvin SN, Pushcharovsky DY (2020) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part I. New gatelite-group minerals ferriperbøeite-(La), (CaLa3)(Fe3+Al2Fe2+)[Si2O7][SiO4]3O(OH)2 and perbøeite-(La), (CaLa3)(Al3Fe2+)[Si2O7][SiO4]3O(OH)2. Mineral Mag 84: 1-35. https://doi.org/10.1180/mgm.2020.42
Klomínský J (1962) Hydrotermální zrudnění čisteckého masivu (západní Čechy). Acta Univ Carol, Geol 3: 159-176
Klomínský J, Rieder M, Kieft C, Mráz L (1971) Heyrovskýite, 6(Pb0.86Bi0.08(Ag,Cu)0.04)S.Bi2S3 from Hůrky, Czechoslovakia, a new mineral of genetic interest. Miner Deposita 6: 133-147. https://doi.org/10.1007/BF00206625
Klomínský J, Jarchovský T, Rajpoot GS (2010) Atlas of plutonic rocks and orthogneisses in the Bohemian Massif. 1. Bohemicum. Czech Geological Survey, Prague, 100 p.
Kopecký L (1969) Zjištění fenitizace u Hůrek v čistecko-jesenickém masivu. Věst Ústř Úst geol 44: 301-305
Kopecký L (1971) Zpráva o nálezu molybdenitu a o výskytu minerálů - nositelů niobu a lantanoidů ve fenitech čisteckého granitoidního masívu. MS, archiv ČGS Praha P022459
Kopecký L (1982) Nálezová zpráva o objevu ložiska molybdenitu v čisteckém masivu. MS, archiv ČGS Praha GF P053204
Kopecký L (1983) Zpráva o nálezu uraninitu (UO2) v čisteckém masivu. MS, Ústř. ústav geologický, archiv ČGS Praha GF P045569
Kopecký L (1985) Regionální prognózní ocenění Mo zrudnění v čistecko-jesenickém masívu. MS, Ústřední ústav geologický, Praha.
Kopecký L, Fiala J, Šťovíčková N (1970) Průvodce k exkurzi 6. 10. 1970 „Oblast fenitizace u Hůrek v čisteckém masívu“. Čs. spol. pro min. a geol. při ČSAV. Ústřední ústav geologický, Praha
Kopecký L, Bernardová E, Křelina J, Marešová Z, Soukup B, Škvor V (1980) Geologicko-petrografické poměry a výpočet prognozních zásob Mo, Zr a Tr na lokalitě Hůrky u Čisté. MS, Ústřední ústav geologický, archiv ČGS Praha GF P035942
Kopecký L, Jr, Chlupáčová M, Klomínský J, Sokol A (1997) The Čistá-Jesenice Pluton in western Bohemia: Geochemistry, geology, petrophysics and ore potential. Sbor geol Věd, Lož geol mineral 31: 97-127
Lee SG, Lee DH, Kim Y, Chae BG, Kim WY, Woo NC (2003) Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture-filling calcite. Appl Geoch 18: 135-143. https://doi.org/10.1016/S0883-2927(02)00071-9
McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral 21: 169-200
Migdisov A, Williams-Jones AE (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner Deposita 49: 987-997. https://doi.org/10.1007/s00126-014-0554-z
Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66: 1185-1196. https://doi.org/10.1016/S0016-7037(01)00849-3
Mrázek Z (1981) Sekundární minerály na ložisku Hůrky. Sbor Vys Šk chem.-technol, Geol 20: 19-28
Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52: 1-17. https://doi.org/10.1016/0016-7037(88)90051-8
Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan JR, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22: 163-179. https://doi.org/10.1127/0935-1221/2010/0022-2022
Petrík I, Broska I, Lipka J, Siman P (1995) Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geol Carpath 46: 79-94
Piper DZ (1974) Rare earth elements in ferromanganese nodules and other marine phases. Geochim Cosmochim Acta 38: 1007-1022. https://doi.org/10.1016/0016-7037(74)90002-7
Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed.) Microbeam Analysis: 104-106. San Francisco Press, San Francisco
Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180: 1783-1786. https://doi.org/10.1016/j.jssc.2007.03.023
René M (2008) Anomalous rare earth element, yttrium and zirconium mobility associated with uranium mineralization. Terra Nova 20: 52-58
Roy S (1992) Environments and processes of manganese deposition. Econ Geol 87: 1218-1236. https://doi.org/10.2113/gsecongeo.87.5.1218
Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Cryst B 25: 925-946. https://doi.org/10.1107/S0567740869003220
Simandl GJ, Paradis S (2018) Carbonatites: Related ore deposits, resources, footprint, and exploration methods. Appl Earth Sci 127: 123-152. https://doi.org/10.1080/25726838.2018.1516935
Stormer JCJr, Pierson MJ, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis. Am Mineral 78: 641-648
Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67: 70-78. https://doi.org/10.1016/0012-821X(84)90039-6
Tvrdý J, Brož B, Brož M, Hanzlík P, Havránek J, Krutský J, Lhotský P, Nekl M, Opekar L, Pechar T, Meierlová I (2021) Výzkumná zpráva o prozkoumání možností výskytu koncentrací prvků vzácných zemin na území ČR. Výsledek V souhrn projektu Analýza nových výskytů prvků vzácných zemin, číslo projektu TITSMPO702. MS, MPO/TAČR Praha
Uher P, Černý P, Chapman R, Határ J, Miko O (1998) Evolution of Nb,Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal Pb,Sb overprint. Can Mineral 36: 535-545
Wang J, Tatsumoto M, Li X, Premo WR, Chao ECT (1994) A precise 232Th-208Pb chronology of fine-grained monazite age of the Bayan Obo REE-Fe-Nb ore deposit, China. Geochim Cosmochim Acta 58: 3155-3169. https://doi.org/10.1016/0016-7037(94)90043-4
Wood SA (1990) The aqueous geochemistry of rare earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturated water pressure. Chem Geol 88: 99-125. https://doi.org/10.1016/0009-2541(90)90106-H
Žáček V, Škoda R, Laufek F (2008) Molybdenem bohatý jarosit z oxidační zóny středověkého Au-Ag ložiska v Hůrkách u Rakovníka (Česká republika). Bull Mineral-Petrolog Odd Nár Muz 16: 190-192