ISSN

print 2570-7337
online 2570-7345

Mineralogie křemenných žil ložiska cínových rud Hřebečná u Abertam v Krušných horách (Česká republika)

Mineralogy of quartz veins of the tin deposit Hřebečná near Abertamy in Krušné hory Mountains (Czech Republic)


DOI: https://doi.org/10.46861/bmp.29.131

Klíčová slova

Abstrakt

An extraordinary rich mineral assemblage (more than 35 determined mineral species) has been discovered                 in quartz greisen mineralization found at dump material of the abandoned Mauritius mine. This mine is situated about 1 km N of the Hřebečná village, 16 km N of Karlovy Vary, Krušné hory Mountains, Czech Republic. The studied mineralization with its textural and mineralogical character differs significantly from the usual fine-grained greisens mined in this area. The primary mineralization is represented by coarse-grained quartz and fluorapatite with sporadic zircon, monazite-(Ce), xenotime-(Y) and very rare cassiterite. Besides common sulphides (arsenopyrite, chalcopyrite, pyrite, sphalerite, tetrahedrite-group minerals), Bi-sulphosalts (aikinite, bismuthinite, berryite, cuprobismutite, emplectite, wittichenite) were determined. Members of the tetrahedrite group also contain increased amounts of Bi - in addition to Bi-rich tennantite-(Zn) and tennantite-(Fe), microscopic zones represented by the not approved Bi-dominant analogue of tennantite („annivite-(Zn)“) were also found. The primary mineralization was intensively affected by supergene processes. Chalcopyrite and sphalerite are replaced by Cu sulphides - especially anilite and digenite, and more rarely by geerite, spionkopite and covellite. Some of the fluorapatite grains in the vein quartz were decomposed and mrázekite, mixite, libethenite, pseudomalachite, hydroxylpyromorphite, metatorbernite as well as rare dzhalindite crystallized in the resulting cavities. However, the most abundant supergene phases are the minerals of the alunite supergroup - crandallite, goyazite, plumbogummite, svanbergite and waylandite. The detailed descriptions, X-ray powder diffraction data, refined unit-cell parameters and quantitative chemical composition of individual studied mineral phases are presented.

Soubory

Abstrakt (PDF) - 176.66KB
Fulltext (PDF) - 12.29MB

Reference

Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53: 197-214. https://doi.org/10.1016/0016-7037(89)90286-x

Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1990) Handbook of Mineralogy. Volume I Elements, Sulfides, Sulfosalts. 588 s., Mineral Data Publishing Tuscon. https://doi.org/10.1180/minmag.1991.055.378.20

Arlt T, Armbruser T (1999) Single-crystal X-ray structure refinement of cornwallite, Cu5(AsO4)2(OH)4: A comparison with its polymorph cornubite and the PO4-analogue pseudomalachite. N Jb Miner, Mh 468-480

Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Miner Petrol 45: 231-246. https://doi.org/10.1007/bf01163114  

Bayliss P, Kolitsch U, Nickel EH, Pring A (2010) Alunite supergroup: recommended nomenclature. Mineral Mag 74: 919-927. https://doi.org/10.1180/minmag.2010.074.5.919

Berry LG (1950) On pseudomalachite and cornetite. Am Mineral 35: 365-385

Biagioni C, George LL, Cook NJ, Makovicky E, Moëlo Y, Pasero M, Sejkora J, Stanley ChJ, Welch MD, Bosi F (2020) The tetrahedrite group: Nomenclature and classification. Am Mineral 105(1): 109-122. https://doi.org/10.2138/am-2020-7128

Bortnikov NS, Kudryavtsev AS, Troneva NV (1986) Bismuth-containing tetrahedrite-tennantite ores from Tary-Ekan deposit (East Karamazar, Central Asia). Mineral Žurnal 8(3): 61-64 (rusky)

Breiter K, Haková M, Schovánková D, Sokol A (1985) Ložiskové zhodnocení greizenů blatenského žulového masívu. MS Ústřední ústav geologický, P090.1985, 62 str.

Breiter K, Haková M, Sokol A (1987) Geochemical types of granites in the Blatná Massif in the Krušné hory Mts. Věst Ústř Úst geol 62: 333-349

Breiter K, Förster H-J, Škoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U-, and F-rich zircon from fractionated perphosphorus granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 88: 15-34. https://doi.org/10.1016/j.lithos.2005.08.011

Breiter K, Förster H-J (2021) Compositional variability of monazite-cheralite-huttonite solid solutions, xenotime, and uraninite in geochemically distinct granites with special emphasis to the strongly fractionated peraluminous Li-F-P-rich Podlesí granite system (Erzgebirge/Krušné Hory Mts., Central Europe). Minerals 11, 127. https://doi.org/10.3390/min11020127

Burnham ChW (1962) Lattice constant refinement. Carnegie Inst Washington Year Book 61: 132-135

Ciesielczuk J, Janeczek J, Dulski M, Krzykawski T (2016) Pseudomalachite-cornwallite and kipushite-philipsburgite solid solutions: chemical composition and Raman spectroscopy. Eur J Mineral 28(3): 555-569. https://doi.org/10.1127/ejm/2016/0028-2536

Cook NJ (1998) Bismuth sulfosalts from hydrothermal vein deposits of Neogene age, NW Romania. Mitt Österreich Mineral Ges 143:19-39

Cordsen A (1978) A crystal-structure refinement of libethenite. Canad Mineral: 16, 153-157

Čejka J, Sejkora J, Plášil J, Keeffe EC, Bahfenne S, Palmer SJ, Frost RL (2011) A Raman and infrared spectroscopic study of Ca2+ dominant members of the mixite group from the Czech Republic. J Raman Spectrosc 42: 1154-1159. https://doi.org/10.1002/jrs.2817

Effenberger H., Krause W, Belendorff K, Bernhardt H-J, Medenbach O, Hybler J, Petříček V (1994) Revision of the crystal structure of mrázekite, BiCu3(OH)2O2(PO4)2·2H2O. Can Mineral 32(2): 365-372

Frost RL, Čejka J, Sejkora J, Plášil J, Bahfenne S, Palmer SJ (2010) Raman spectroscopy of the mixite mineral BiCu6(AsO4)3(OH)6·3H2O from the Czech Republic. J Raman Spectrosc 41: 566-570. https://doi.org/10.1002/jrs.2454

Gablina IF, Mozgova NN, Borodaev YS, Stepanova TV, Cherkashev GA, Il´in MI (2000) Copper sulfide association in recent oceanic ores of the Logachev hydrothermal field (Mid-Atlantic Ridge, 14 degrees 45´ N). Geol Ore Depos 42: 296-316

Ghose S (1963) The crystal structure of pseudomalachite, Cu5(PO4)2(OH)4. Acta Cryst 16: 124-128. https://doi.org/10.1107/s0365110x63000281

Goble RJ (1980) Copper sulfides from Alberta: yarrowite Cu9S8 and spionkopite Cu39S28. Can Mineral 18: 511-518

Goble RJ (1981) The leaching of copper from anilite and the production of metastable copper sulfide structure. Can Mineral 19: 583-592

Goble RJ, Robinson G (1980) Geerite, Cu1.60S, a new copper sulfide from Dekalb township, New York. Can Mineral 18: 519-523

Gołębiowska B, Pieczka A, Parafiniuk J (2012) Substitution of Bi for Sb and As in minerals of the tetrahedrite series from Rędziny, Lower Silesia, southwestern Poland. Can Mineral 50: 267-279. https://doi.org/10.3749/canmin.50.2.267

Grey IE, Mumme WG, Bordet P, Mills SJ (2008) A new crystal-chemical variation of the alunite-type structure in monoclinic PbZn0.5Fe3(AsO4)2(OH)6. Can Mineral 46: 1355-1364. https://doi.org/10.3749/canmin.46.5.1355

Grønvold F, Westrum EF (1980) The anilite/low digenite transition. Am Mineral 65: 574-575

Gu X, Watanabe M, Ohkawa M, Hoshino K, Shibata Y, Chen D (2001) Felbertalite and related bismuth sulfosalts from the Funiushan copper skarn deposit, Nanjing, China. Can Mineral 39: 1641-1652. https://doi.org/10.2113/gscanmin.39.6.1641

Günther R (1857) Die St. Mauritzi Zeche oder das Behrische Werk am alten Hengst bei Abertham i. Böh. MS Geofond, Praha K000129, 36 s

Hájek J (2017) Historie dobývání cínu v dole Mauritius na Zadní Hřebečné. Vývoj těžby na konci 19. století a v první polovině 20. století. MS dipl. práce Filosofická fakulta Masarykovy univerzity Brno 102 s.

Hatert F (2005) Transformation sequences of copper sulfides at Vielsalm, Stavelot Massif, Belgium. Can Mineral 43: 623-635. https://doi.org/10.2113/gscanmin.43.2.623

Heřmanská M (2013) Minerální asociace, alterační reakce a transportní model pro vznik greisenů blatenského granitového masívu v Krušných horách. MS dipl. práce PřF Univerzita Karlova Praha

Hutton CO (1959) An occurrence of pseudomalachite at Safford, Arizona. Am Mineral 44: 1298-1301

Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63(3-4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7

Jambor JL (1999) Nomenclature of the alunite supergroup. Can Mineral 37: 1323-1341

Jambor JL, Dutrizac JE (1983) Beaverite-plumbojarosite solid solutions. Can Mineral 21: 101-113

Jangl L (1975) Vývoj dolování v blatenském revíru v Krušných horách ve 14. až 19. století. Studie z dějin hornictví 6: 65-83

Jangl L (1988) Báňskohistorická studie oblasti Rolava-Přebuz-Hřebečná (Sn-W). MS Geofond Kutná Hora. GKH 231

Jangl L, Hašková K, Lisková S (1989) Rolava-Hřebečná, část Hřebečná. MS Geofond, Kutná Hora GKH 235

Ježek B (1933) Cínovcové doly u Hengstererben v Krušných horách. Hornický věstník 15: 33-38, 60-65, 83-86, 105-107, 154-156             

Karup-Møller S (1977) Mineralogy of some Ag-(Cu)-Pb-Bi sulphide associations. Bull Geol Soc Denmark 26: 41-68

Kieft K, Eriksson G (1984) Regional zoning and metamorphic evolution of the Vindfall Pb-Zn ore, east central Sweden. Geol Fören Stockholm Förh 106: 305-317. https://doi.org/10.1080/11035898509454655

Klünder MH, Karup-Møller S, Makovicky E (2003) Exploratory studies on substitutions in the tetrahedrite-ten­nantite solid solution series. III. The solubility of bismuth in tetrahedrite-tennantite containing iron and zinc. N Jb Mineral, Mh: 153-175. https://doi.org/10.1127/0028-3649/2003/2003-0153

Knížková-Drbohlavová J, Roos E, Strnad J (1970) Závěrečná zpráva o výzkumu ložisek cínových rud blatenského žulového masívu. MS Geofond, Praha P022179, 101 s

Komárek M (1965) Nerostné bohatství Krušných hor. Nár muz a Spol Nár muz 22 s.

Komárek M (1968) Mineralogie a petrografie greisenů blatenského žulového masivku. MS dipl. práce PřF Univerzita Karlova Praha

Kolitsch U, Pring A (2001) Crystal chemistry of the crandallite, beudantite, and alunite groups: A review and evaluation of the suitability as storage materials for toxic metals. J Miner Petrol Sci 96: 67-78. https://doi.org/10.2465/jmps.96.67

Kratochvíl F (1965) Některé minerály z wolframitových a cínovcových ložisek v jihozápadních Krušných horách. Čas Nár Muz, Ř přírodověd 134, 1: 54-60 

Kratochvíl F (1967) Cínovcové ložisko Starý Hengst u Hřebečné v Krušných horách. Čas Nár Muz, Ř přírodověd: 140-147

Kratochvíl J (1958) Topografická mineralogie Čech II. (heslo Hengstererben). NČSAV Praha

Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Mineral 14: 364-386

Lafuente B, Doens RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM, eds. (2015) Highlights in Mineralogical Crystallography: 1-30, W. De Gruyter, Berlin. https://doi.org/10.1515/9783110417104-003

Laube G (1876) Geologie des böhmischen Erzgebirges. I. Theil: Geologie des westlichen Erzgebirges oder des Gebirges zwischen Maria-Kulm-Schönbach und Joachimsthal. Gottesgab Arch Naturwiss Landes-Durchforsch Böhm, III, 2: 1-280

Litochleb J, Sejkora J, Šrein V, Malec J (2009) Kašperskohorské zlato (Šumava, Česká republika). Bull mineral-petrolog odd Nár Muz (Praha) 17(1): 1-13

Makovicky E (2019) Algorithms for calculations of homologue order N in the homologous series of sulfosalts. Eur J Mineral 31(1): 83-97. https://doi.org/10.1127/ejm/2018/0030-2791

Makovicky E, Makovicky M (1978) Representation of compositions in the bismuthinite-aikinite series. Can Mineral 16: 405-409

Malý KD, Sejkora J (2004) Supergenní Cu a Bi mineralizace na lokalitě Tři Sekery u Mariánských Lázní. Bull mineral-petrolog Odd Nár Muz (Praha) 12: 136-139

McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral 21: 169-200. https://doi.org/10.1515/9781501509032-010  

Mereiter K, Preisinger A (1986) Kristallstrukturdaten der Wismutminerale Atelestit, Mixit und Pucherit. Oest Akad Wissen, math - naturwiss Kl 123, 79-81

Mills SJ, Grey IE, Mumme WG, Miawaki R, Matsubara S, Bordet P, Birch WD, Raudsepp M (2008) Kolitschite, Pb[Zn0.50.5]Fe3(AsO4)2(OH)6, a new mineral from the Kintore opencut, Broken Hill, New South Wales. Austral J Mineral 14: 63-67

Morimoto N, Kato K (1970) Phase relations of the Cu-S system at low temperatures: stability of anilite. Am Mineral 55: 106-117

Mumme WG, Sparrow GJ, Walker GS (1988) Roxbyite, a new copper sulphide mineral from the Olympic Dam deposit, Roxby Downs, South Australia. Mineral Mag 52: 323-330. https://doi.org/10.1180/minmag.1988.052.366.03

Nesrsta M, Urban M, Weber N (2015) Důl Mauritius v Hřebečné. Stavebně - historický průzkum. Abertamy

Novák F, Zahradník K (1962) Geochemicko-prospekční průzkum india. MS ÚNS Kutná Hora P015549, 418 s

Okrusch M, Lorenz JA, Weyer S (2007) The genesis of sulfide assemblages in the former Wilhemine mine, Spessart, Bavaria, Germany. Can Mineral 45: 723-750. https://doi.org/10.2113/gscanmin.45.4.723

Olds TA, Kampf AR, Rakovan JF, Burns PC, Mills OP, Laughlin-Yurs C (in print) Hydroxylpyromorphite, modern description and characterization of a mineral important to lead-remediation. Am Mineral preprint, https://doi.org/10.2138/am-2021-7516

Olmi F, Sabelli C, Trosti Ferroni R (1991) A contribution to the crystal chemistry of mixite group minerals from Sardinia (Italy). N Jb Mineral, Mh: 487-499

Ondruš P (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum: 133-136, 297-300, EPDIC-2. Enschede. https://doi.org/10.4028/www.scientific.net/msf.133-136.297

Ondruš P, Veselovský F, Hloušek J, Skála R, Vavřín I, Frýda J, Čejka J, Gabašová A (1997) Secondary minerals of the Jáchymov (Joachimsthal) ore district. J Czech Geol Soc 42(4): 3-76

Pauliš P, Urban M, Sejkora J, Hloušek J, Pour O (2015) Cínový revír Hřebečná v Krušných horách a jeho mineralogie. Minerál 23(4): 328-338

Pauliš P, Dolníček Z, Gramblička R, Pour O (2020) Neobvyklá žilná Cu-Zn-Ag-Pb-As-Sb-Se-Sn-Bi mineralizace z Jedové jámy u Vejprt v Krušných horách (Česká republika). Bull Mineral Petrolog 28(2): 385-405. https://doi.org/10.46861/bmp.28.385  

Plášil J, Sejkora J, Čejka J, Škácha P, Goliáš V (2009) Supergene mineralization of the Medvědín uranium deposit, Krkonoše Mountains, Czech Republic. J Geosci 54: 15-56. https://doi.org/10.3190/jgeosci.029

Pouchou J, Pichoir F (1985) „PAP“ (jrz) procedure for improved quantitative             microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press San Francisco

Rattray KJ, Taylor MR, Bevan DJM, Pring A (1996) Compositional segregation and solid solution in the lead-dominant alunite-type minerals from Broken Hill, N.S.W. Mineral Mag 60: 779-785. https://doi.org/10.1180/minmag.1996.060.402.07

René M (2014) Composition of coexisting zircon and xenotime in rare-metal granites from the Krušné Hory/Erzgebirge Mts. (Saxothuringian Zone, Bohemian Massif). Miner Petrol 108: 551-569. https://doi.org/10.1007/s00710-013-0318-y  

Scott KM (1987) Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. Am Mineral 72: 178-187

Sejkora J, Šrein V (1996) Příspěvek ke krystalochemii mixitu z lokalit Českého masívu. Zpr geol výzk v r 1995: 153-155

Sejkora J, Gabašová A, Novotná M (1997) Mixit ze Smrkovce u Mariánských Lázní. Bull mineral-petrolog Odd Nár Muz (Praha) 4-5: 185-187

Sejkora J, Řídkošil T, Šrein V (1999) Zálesíite, a new mineral of the mixite group, from Zálesí, Rychlebské hory Mts., Czech Republic. N Jb Mineral, Abh 175(2): 105-124. https://doi.org/10.1127/njma/175/1999/105

Sejkora J, Čejka J, Šrein V (2001) Pb dominant members of crandallite group from Cínovec and Moldava deposits, Krušné hory Mts. (Czech Republic). J Czech Geol Soc 46(1-2): 53-68

Sejkora J, Ondruš P, Fikar M, Veselovský F, Mach Z, Gabašová A, Škoda R, Beran P (2006) Supergene minerals at the Huber stock and Schnöd stock deposits, Krásno ore district, the Slavkovský les area, Czech Republic. J Czech Geol Soc 51: 57-101. https://doi.org/10.3190/jcgs.989

Sejkora J, Škovíra J, Čejka J, Plášil J (2009) Cu-rich members of the beudantite-segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic. J Geosci 54: 355-371. https://doi.org/10.3190/jgeosci.055

Sejkora J, Pauliš P, Malíková R, Zeman M, Krtek V (2013) Supergenní minerály As ze štoly č. 2 Preisselberg, rudní revír Krupka (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 21: 201-209

Sejkora J, Števko M, Ozdín D, Pršek S, Jeleň J (2015) Unusual morphological forms of hodrusite from the Rozália vein, Hodruša-Hámre near Banská Štiavnica (Slovak Republic). J Geosci 60(1): 11-22. https://doi.org/10.3190/jgeosci.188

Sejkora J, Škácha P, Kopecký S sen, Kopecký S jun, Pauliš P, Malíková R, Velebil D (2016) Se a Cu mineralizace z Bílé Vody u Javorníka (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 24(2): 161-177

Sejkora J, Pauliš P, Gramblička R, Malíková R, Pour O, Dolníček Z, Ulmanová J, Vrtiška L (2019) Nově zjištěná Bi-Co-Ni-As-U-V mineralizace přísečnického rudního revíru v Krušných horách (Česká republika). Bull Mineral Petrolog 27(1): 1-37

Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. Can Mineral 23: 517-534

Shoemaker GL, Anderson JB, Kostiner E (1981) The crystal structure of a third polymorph of Cu5(PO4)2(OH)4. Am Mineral 66: 169-175

Schaller J (1785) Topographie des Königsreichs Böhmens. Díl II. Praha

Schandl ES, Gorton MP (2004): A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ Geol 99: 1027-1035. https://doi.org/10.2113/gsecongeo.99.5.1027

Spiridonov EM, Chvileva TN, Borodaev YS, Vinogradova RA, Kononov OV (1986) The influence of bismuth on optical properties of fahlores. Dokl Akad Nauk SSSR 290: 1475-1478 (rusky)

Škácha P, Sejkora J (2013) Výskyt cinnabaritu s mikroskopickým gortdrumitem na ložisku Vrančice u Příbrami (Česká republika). Bull mineral-petrolog odd Nár Muz (Praha) 21(1): 57-61

Škvor V (1975) Geologie české části Krušných hor a Smrčin. ÚÚG Praha

Števko M, Sejkora J (2012) Supergene arsenates of copper from Špania Dolina-Piesky deposit, central Slovakia. Acta Mineral-Petrograph, Abstract Ser 7: 130

Števko M, Sejkora J (2014) Contribution to chemical composition of chalcophyllite, pseudomalachite and olivenite group minerals from Špania Dolina-Piesky, Slovak Republic. Book of abstracts, CEMC 2014, 133-134

Števko M, Sejkora J, Ozdín D (2008) Henclová - nová lokalita pseudomalachitu v Slovenskej republike. Bull mineral-petrolog Odd Nár Muz (Praha) 16: 36-39

Števko M, Sejkora J, Malíková R (2016) Nové údaje o supergénnych mineráloch z banského poľa Rainer, ložisko Ľubietová - Podlipa (Slovenská republika). Bull mineral-petrolog Odd Nár Muz (Praha) 24(1): 1-12

Števko M, Sejkora J, Súľovec Š (2017) Príspevok k chemickému zloženiu libethenitu z typovej lokality: ložisko Podlipa, Ľubietová (Slovenská republika). Bull Mineral Petrolog 25(2): 252-259

Števko M, Sejkora J, Dolníček Z (2020) Pseudomalachit z lokality Zadné Breziny pri Gemerskej Polome (Slovenská republika). Bull Mineral Petrolog 28(2): 290-294. https://doi.org/10.46861/bmp.28.290

Tanaka T, Minakawa T, Kusachi I, Tanabe M (2009) Bi-bearing and REE-free zálesíite from the Fuka mine, Okayama Prefecture, Japan. J Mineral Petrolog Sci 104(3): 164-167. https://doi.org/10.2465/jmps.081021c

Toman J, Hrazdil V, Sejkora J (2016) Pseudomalachit a descloizit v supergenní mineralní asociaci z lokality Krucemburk (Česká republika). Acta Mus Moraviae, Sci geol 101(1-2): 33-43

Topa D, Makovicky E, Paar WH (2002) Composition ranges and exsolution pairs for the members of the bismuthinite-aikinite series from Felbertal, Austria. Can Mineral 40(3): 849-869. https://doi.org/10.2113/gscanmin.40.3.849

Topa D, Makovicky E, Balič-Zunič T (2003a) Crystal structures and crystal chemistry of members of the cuprobismutite homologous series of sulfosalts. Can Mineral 41: 1481-1501. https://doi.org/10.2113/gscanmin.41.6.1481

Topa D, Makovicky E, Balič-Zunič T, Paar WH (2003b) Kupčíkite, Cu3.4Fe0.6Bi5S10, a new sulfosalt from Felbertal, Austria, and its crystal structure. Can Mineral 41: 1155-1166. https://doi.org/10.2113/gscanmin.41.5.1155

Topa D, Makovicky E, Putz H, Mumme WG (2006) The crystal structure of berryite, Cu3Ag2Pb3Bi7S16. Can Mineral 44(2): 465-480. https://doi.org/10.2113/gscanmin.44.2.465

Tuček K (1948) Nové nálezy nerostů II. Příspěvky k topografické mineralogii. Věst Král Čes Společ Nauk, Tř mat-přírodověd 13: 1-25

Urban M, Malina O (2013) Vodní hospodářství v cínovém revíru Hřebečná. In: Proměny montánní krajiny: 162-179, NPÚ Loket

Urban M, Malina O (2014) Strukturní pozice greisenových žil v blatenském masívu v Krušných horách. ArchaeoMontan 2013, Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 28: 19-30. Dresden.

Urban M, editor (2014) Horní města Krušných hor. 1. díl Karlovarský kraj. Fornica publishing, Sokolov

Urban M (2015) Důl Mauritius na Hřebečné (Die Grube Mauritius auf Hřebečná). TU Bergakademie Freiberg

Velebil D, Sejkora J (2018) Bismutem bohaté tennantity z Jáchymova (Česká republika). Bull Mineral Petrolog 26(2): 213-222

Vrtiška L, Sejkora J, Malíková R (2016) Philipsburgit z Krásna u Horního Slavkova, Slavkovský les (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha), 24(2): 243-251

Vrtiška L, Malíková R, Dolníček Z, Sejkora J (2019) Pyromorfit, kintoreit a cerusit z historického Ag-Pb-Zn ložiska Ratibořské Hory (Česká republika). Bull Mineral Petrolog 27(2): 394-410

Yakubovich OV, Mel‘nikov OK, Wester D (1993) Libethenite Cu2(PO4)OH: synthesis, crystal-structure refinement, and comparative crystal chemistry. Crystallogr reports 38(1): 32-36

Yvon K, Jeitschko W, Parthé E (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J Appl Cryst 10: 73-74. https://doi.org/10.1107/s0021889877012898

Zema M, Tarantino SC, Callegari AM (2010) Thermal behaviour of libethenite from room temperature up to dehydration. Mineral Mag 74: 553-565. https://doi.org/10.1180/minmag.2010.074.3.553

Zhu XK, OʼNions RK (1999) Monazite chemical composition: some implications for monazite geochronology. Contrib Mineral Petrol 137: 351-363. https://doi.org/10.1007/s004100050555