ISSN

print 2570-7337
online 2570-7345

Minerály kontaminovaných granitových pegmatitů z lomu Pohled u Havlíčkova Brodu (moldanubikum), část II: prvky a sulfidy

Minerals of contaminated granitic pegmatites from the Pohled quarry near Havlíčkův Brod (Moldanubicum, Czech Republic), part II: elements and sulphides


DOI: https://doi.org/10.46861/bmp.29.090

Klíčová slova

Abstrakt

In the Pohled quarry near Havlíčkův Brod town (central part of Czech Republic), texturally and mineralogically simple contaminated anatectic pegmatites form dikes or irregular bodies cementing breccia of host metamorphic rocks (paragneisses, amphibolites) belonging to the Monotonous (Ostrong) Group of the Moldanubicum of the Bohemian Massif. They exhibit signs of intense hydrothermal overprint and also the presence of abundant disseminations, nests and veinlets of ore minerals. A detailed mineralogical study revealed the presence of an extraordinary rich ore assemblage (20 species in total, including one unnamed phase). The oldest minerals are sphalerite (rich in Fe), löllingite, Fe-Co-Ni sulphoarsenides (cobaltite, glaucodot, arsenopyrite, gersdorffite), pyrrhotite, galena and chalcopyrite, in later portion accompanied by inclusions of Bi-minerals (native bismuth, bismuthinite, joséite-A, joséite-B, ikunolite and a Pb-Bi sulphosalt). The composition of the Pb-Bi sulphosalt is equal to Ag,Fe-substituted eclarite; its identity was confirmed also by Raman spectrum. Pyrite is very abundant phase, present probably in several generations. The Fe-Co-Ni thiospinels disseminated in younger chlorite, and represented by siegenite, violarite, grimmite and an unnamed NiFe2S4 phase, are the youngest ore minerals. The mineral association as well as chemical composition of most ore minerals are well comparable to those of local polymetallic ore veins and Alpine-type veins, which give evidence for identical origin of all these ore mineralizations. The formation of pegmatite-hosted ore assemblage was long-lasting multiphase process, which took place at temperatures between ca. 350 and <120 °C during changing fugacities of sulphur, tellurium and oxygen. A distinct enrichment in cobalt and nickel of ore mineralization hosted by pegmatites (in comparison with hydrothermal veins) is explained in terms of pronounced interactions of fluids with amphibolites and serpentinites

Soubory

Abstrakt (PDF) - 202.95KB
Fulltext (PDF) - 5.08MB

Reference

Ackerman L, Zachariáš J, Pudilová M (2007) P-T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. Int J Earth Sci 96: 623-638. https://doi.org/10.1007/s00531-006-0133-3

Alonso-Azcárate J, Rodas M, Bottrell SH, Raiswell R, Velasco F, Mas JR (1999) Pathways and distances of fluid flow during low-grade metamorphism: evidence from pyrite deposits of the Cameros Basin, Spain. J Metamorph Geol 17: 339-348. https://doi.org/10.1046/j.1525-1314.1999.00202.x

Becker M, De Villiers J, Bradshaw D (2010) The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits. Econ Geol 105: 1025-1037. https://doi.org/10.2113/econgeo.105.5.1025

Bernard JH (1981) Minerály rudonosných hydrotermálních procesů. In Bernard JH, Čech F, Dávidová Š, Dudek A, Fediuk F, Hovorka D, Kettner R, Koděra M, Kopecký L, Němec D, Paděra K, Petránek J, Sekanina J, Staněk J, Šímová M: Mineralogie Československa: 186-405. Academia Praha

Bossi F, Biagioni C, Pasero M (2018) Nomenclature and classification of the spinel supergroup. Eur J Mineral 31: 183-192. https://doi.org/10.1127/ejm/2019/0031-2788

Cempírek J, Novák M, Dolníček Z, Kotková J, Škoda R (2010) Crystal chemistry and origin of grandidierite, ominelite, boralsilite and werdingite from the Bory Granulite Massif, Czech Republic. Am Mineral 95(10): 1533-1547. https://doi.org/10.2138/am.2010.3480

Cook NJ, Ciobanu CL, WagnerT, Stanley CJ (2007) Minerals of the system Bi-Te-Se-S related to the tetradymite archetype: review of classification and compositional variation. Can Mineral 45(4): 665-708. https://doi.org/10.2113/gscanmin.45.4.665

Craig JR (1967) Phase relations and mineral assemblages in the Ag-Bi-Pb-S system. Miner Deposita 1: 278-306. https://doi.org/10.1007/bf00205202

Černý P, Harris DC (1978) The Tanco pegmatite at Bernic Lake, Manitoba; XI, Native elements, alloys, sulfides and sulfosalts. Can Mineral 16(4): 625-640

Černý P, Massau M, Ercit TC, Chapman R, Chackowski LE (2001) Stannite and kesterite from the Peerless pegmatite, Black Hills, South Dakota, USA. J Czech Geol Soc 46(1-2): 27-33

Čvileva TN, Bezsmertnaja MS, Spiridonov EM, Agroskin AS, Papayan GV, Vinogradova RA, Lebedeva SI, Zavjalov EN, Filimonova AA, Petrov VK, Rautian LI, Svesnikova OL (1988) Handbook for determination of ore minerals in reflected light. Moskva, 504 pp (in Russian)

Dobeš P, Malý K (2001) Mineralogie polymetalických rudních výskytů ve střední části havlíčkobrodského revíru. Vlast sborn Vysoč, odd přír věd 15: 51-85

Doleželová T (2016) Hydrotermální alterace vybraných typů hornin v havlíčkobrodském rudním revíru (moldanubikum). MS, diplomová práce, UP Olomouc

Dolníček Z, Malý K, Ulmanová J, Havlíček J, Vrtiška L (2020) Minerály kontaminovaných granitových pegmatitů z lomu Pohled u Havlíčkova Brodu (moldanubikum), část I: oxidy, karbonáty, silikáty a fosfáty. Bull Mineral Petrolog 28(1): 132-151. https://doi.org/10.46861/bmp.28.132

Dolníček Z, Ulmanová J (2021) Pb-Bi mineralizace v amfibolitech z lomu Libodřice u Kolína (kutnohorské krystalinikum, Česká republika). Bull Mineral Petrolog 29(1): 6-15. https://doi.org/10.46861/bmp.29.006

Fuksová A, Dolníček Z, Gadas P (2011) Mineralogie sulfidické, arzenidové a telluridové mineralizace v cordieritickém pegmatitu z lomu Bory u Velkého Meziříčí (strážecké moldanubikum. Geol Výzk Mor Slez 18: 125-127

Gadas P, Novák M, Staněk J, Filip J, Vašinová Galiová M (2012) Compositional evolution of zoned tourmaline crystals from pockets in common pegmatites, the Moldanubian Zone, Czech Republic. Can Mineral 50: 895-912. https://doi.org/10.3749/canmin.50.4.895

Gadas P, Novák M, Cempírek J, Filip J, Vašinová Galiová M, Groat LA, Všianský D (2014) Mineral assemblages, compositional variation and crystal structure of feruvitic tourmaline from contaminated anatectic pegmatite in Mirošov near Strážek, Moldanubian Zone, Czech Republic. Can Mineral 52: 285-301. https://doi.org/10.3749/canmin.52.2.285

Hak J, Johan Z (1961) Mineralogicko-geochemický výzkum indiové anomálie Pohled u Havlíčkova Brodu. Sbor geol věd, technol geochem 2: 77-101

Harada S, Suzuki Y, Miyawaki R, Momma K, Shigeoka M, Matsubara S (2016) Eclarite and other Bi-minerals from the Jishakuyama ore deposit of the Akagane mine, Iwate Prefecture, Japan. Bull Nat Mus, Nat Sci, Ser C 42: 19-27

Havlíček J, Výravský J, Malý K (2018) Nálezy zeolitů v lomu Pohled u Havlíčkova Brodu. Acta Rer Nat 22: 1-4

Kadlec T, Venclík V, Pauliš P (2018) Nález zeolitů a doprovodné mineralizace z žil alpského typu a hydrotermálně alterovaných pegmatitů v kamenolomu Pohled u Havlíčkova Brodu. Minerál 24(5): 107-118

Kaneda H, Takenouchi S, Shoji T (1986) Stability of pentlandite in the Fe-Ni-Co-S system. Miner Deposita 21: 169-180. https://doi.org/10.1007/bf00199797

Kerestedjian T (1997) Chemical and morphological features of arsenopyrite, concerning its use as a geothermometer. Miner Petrol 60: 231-243. https://doi.org/10.1007/bf01173710

Klemm D (1965) Synthesen und Analysen in den Dreiecksdiagrammen FeAsS-CoAsS-NiAsS und FeS2-CoS2-NiS2. N Jahrb Mineral, Abh 103: 205-255. https://doi.org/10.1127/njma/103/1965/205  

Kontny A, De Wall H, Sharp TG, Pósfai M (2000) Mineralogy and magnetic behavior of pyrrhotite from a 260°C section at the KTB drilling site, Germany. Am Mineral 85: 1416-1427. https://doi.org/10.2138/am-2000-1010

Kostov I, Stefanova JM (1981) Sulphide minerals. Crystal chemistry, parageneses and systematics. Bulgarian Acad Sci, Sofia, 212 pp

Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Mineral 14: 364-386

Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in Mineralogical Crystallography, Berlin, Germany, W. De Gruyter, 1-30. https://doi.org/10.1515/9783110417104-003

Losos Z, Sulovský P, Vávra V (1998) Sn-, Bi- and Ag- minerals from pegmatites, aplites and quartz veins of Žulová granitic massif (Silesicum, Czech Republic). Krystalinikum 24: 53-72

Makovicky E, Makovicky M (1978) Representation of compositions in the bismuthinite-aikinite series. Can Mineral 16: 405-409

Malý K, Dolníček Z (2005) Pb-Zn-Ag vein mineralization of the central part of the Českomoravská vrchovina Upland (Czech Republic): S, C, and O stable isotope study. Bull Geosci 80(4): 307-319

Márquez-Zavalía MF, Galliski MÁ, Černý P, Chapman R (2012) An assemblage of bismuth-rich, tellurium-bearing minerals in the El Quemado granitic pegmatite, Nevados de Palermo, Salta, Argentina. Can Mineral 50(6): 1489-1498. https://doi.org/10.3749/canmin.50.6.1489  

Mastíková E (2009) Geologická dokumentace lomu Pohled (moldanubikum). MS, bakalářská práce, UP Olomouc

Mastíková E (2011) Mineralogie a podmínky vzniku vybraných mineralizací v lomu Pohled (moldanubikum). MS, diplomová práce, PřF UP v Olomouci

Murowchick JB (1992) Marcasite inversion and the petrographic determination of pyrite ancestry. Econ Geol 87: 1141-1152. https://doi.org/10.2113/gsecongeo.87.4.1141

Murowchick JB, Barnes HL (1986) Marcasite precipitation from hydrothermal solutions. Geochim Cosmochim Acta 50: 2615-2629. https://doi.org/10.1016/0016-7037(86)90214-0

Novák M (2005) Granitické pegmatity Českého masívu (Česká republika); mineralogická, geochemická a regionální klasifikace a geologický význam. Acta Mus Moraviae, Sci Geol 90: 3-75

Novák M, Kadlec T, Gadas P (2013) Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastějovice region. J Geosci 58: 21-47. https://doi.org/10.3190/jgeosci.132

Oen IS, Kieft C (1976) Silver-bearing wittichenite-chalcopyrite-bornite intergrowths and associated minerals in the Mangualde pegmatite, Portugal. Can Mineral 14(2): 185-193

Paar WH, Chen TT, Kupcik V, Hanke U (1983) Eclarit, (Cu,Fe)Pb9Bi12S28, ein neues Sulfosalz von Bärenbad, Hollersbachtal, Salzburg, Österreich. Tsch mineral petrograph Mitt 32(2-3): 103-110. https://doi.org/10.1007/bf01081104

Pauliš P, Hrůzek L, Janeček O, Dvořák Z, Toman J (2015) Nejzajímavější mineralogická naleziště Čech - zeolity a doprovodná mineralizace. Kuttna, Kutná Hora

Parafiniuk J, Pieczka A, Gołębiowska B (2008) Compositional data for Ikunolite from Redziny, Rudawy Janowickie, Lower Silesia, Poland. Can Mineral 46(5): 1305-1315. https://doi.org/10.3749/canmin.46.5.1305

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed.) Microbeam Analysis: 104-106. San Francisco Press, San Francisco

Pršek J, Peterec D (2008) Bi-Se-Te mineralization from Úhorná (Spišsko Gemerské Rudohorie Mts., Slovakia): A preliminary report. Mineralogia 39(3-4): 87-103. https://doi.org/10.2478/v10002-008-0007-3

Pršek J, Ozdín D, Sejkora J (2008) Eclarite and associated Bi sulfosalts from the Brezno-Hviezda occurrence (Nízke Tatry Mts, Slovak Republic). N Jahrb Mineral Abh 185 (2): 117-130. https://doi.org/10.1127/0077-7757/2008/0112

Sejkora J, Litochleb J, Novák M, Cícha J, Dolníček Z (2020) Nickel-(Bi,Ag) sulphide mineralization from NYF Vepice pegmatite, Milevsko pluton, southern Bohemia (Czech Republic) - a reflection of the parental granite chemistry. J Geosci 65(3): 187-199. https://doi.org/10.3190/jgeosci.310  

Staněk J (1997) Asociace minerálů významnějších pegmatitových žil v Hatích u Dolních Borů na západní Moravě. Acta Mus Moraviae, Sci geol 82: 3-19

Sugaki A, Kitakaze A, Kojima S (1987) Bulk compositions of intimate intergrowths of chalcopyrite and sphalerite and their genetic implications. Miner Deposita 22(1): 26-32. https://doi.org/10.1007/bf00204240

Sundblad K, Zachrisson E, Smeds S-A, Berglund S, Ålinder C (1984) Sphalerite geobarometry and arsenopyrite geothermometry applied to metamorphosed sulfide ores in the Swedish Caledonides. Econ Geol 79: 1660-1668. https://doi.org/10.2113/gsecongeo.79.7.1660  

Škácha P, Sejkora J, Plášil J, Dolníček Z, Ulmanová J (2021) Grimmite, NiCo2S4, a new mineral of spinel supergroup from Příbram, Czech Republic. Eur J Mineral 33: 175-187. https://doi.org/10.5194/ejm-33-175-2021

Škoda R, Čopjaková R (2005) Neobvyklá Sn mineralizace z NYF pegmatitu u Klučova; třebíčský masiv, moldanubikum. Geol Výzk Mor Slez 2004: 93-97

Špinar P (1995) Vztah mezi pegmatity a alpskými žilami v kamenolomu u Horních Borů. Vlast Sbor Vysoč, odd věd přír 12: 3-18

Topa D, Makovicky E (2012) Eclarite: new data and interpretations. Can Mineral 50(2): 371-386. https://doi.org/10.3749/canmin.50.2.371

Tuček K (1970) Naleziště českých nerostů a jejich literatura 1951-1965. Academia. Praha

Welser P, Záruba J (2004) Biotitický pegmatit s fluorapatitem od Pohledu u Havlíčkova Brodu. Bull Mineral-Petrolog Odd Nár Muz Praha 12: 216-219

Živkovič Ž, Živkovič D (1996) Comparative determination of the infinite dilution constants and interaction parameters in the binary system Bi-Sb. Rud-Metalur Zbor 43(3-4): 215-218