ISSN

print 2570-7337
online 2570-7345

Supergénne minerály z U-Cu rudného výskytu Východná-Nižný Chmelienec v Nízkych Tatrách (hronikum, Slovensko)

Supergene minerals from the U-Cu ore occurrence Východná-Nižný Chmelienec, the Nízke Tatry Mts. (Hronic Unit, Slovakia)


DOI: https://doi.org/10.46861/bmp.29.077

Klíčová slova

Abstrakt

An association of supergene U-Cu and Y/REE minerals was found in a relic of old ore dump at the abandoned U deposit occurrence Východná-Nižný Chmelienec, the northern slopes of the Nízke Tatry Mts., Slovakia. They have partially recent origin, since exploration of the locality took place between 1965 and 1966. The studied mineral assem- blage is represented by goethite, malachite, uranophane and (meta)zeunerite, in a lesser extent baryte and rare zálesíite. Uranophane appears separately (globular aggregates, thin coatings) and it also forms the main part of the yellow to yellow-green crystalline crusts on the rock cracks. The chemical composition of the uranophane was determined by electron microprobe analyses and it is close to its ideal chemical formula Ca(UO2)2(SiO3OH)2·5H2O. The average chemical composition of the studied uranophane can be expressed by an empirical formula (Ca1.0Mg0.02K0.01Fe0.01Ba0.01)Σ1.05(UO2)2.08(SiO3OH)1.84·5H2O. The infrared vibrational spectra of the studied uranophane show n3 (UO2)2+ at 850-760 cm-1the n3 (SiO4)4- antisymmetric stretching vibration at 1000-900 cm-1; the n1 (SiO4)4- symmetric stretching vibration at 1150-1199 cm-1; the d H2O bending vibration at 1800-1600 cm-1 and OH stretching vibrations at 3407; 3408 and 3409 cm-1. The weak bands 2648; 2646 and 2651 cm-1 may be assigned to organic impurities. The calculated U-O bond length 1.83 Å corresponds to short U-O bonds in uranophane. The accessory admixtures of uranophane coatings are (meta)zeunerite and zálesíite. (Meta)zeunerite occasionally forms thin coatings of light green to emerald green tabular crystals (up tu 0.5 mm) on the surface of the rocks. Chemical analyses of (meta)zeunerite correspond to the empirical formula (Cu0.66K0.03Fe0.01Ca0.01)Σ0.71(UO2)2.11[(AsO4)1.96(PO4)0.01]Σ1.97·12H2O. Zálesíite occurs as crystalline aggregates, nests, formed by tiny acicular crystals, up to 100 µm in length. This is the second finding (occurrence) of this mineral in Slovakia. An average zálesíite chemical composition is (Ca0.83REE0.18U0.05Al0.03Ti0.01)Σ1.10(Cu5.81Fe0.06Zn0.02)Σ5.90[(AsO4)2.75 (SiO4)0.21(PO4)0.02(SO4)0.03]Σ3.01(OH)5.10·3H2O. Malachite, which has been also found in the association, is only a minor mineral in the studied locality. The formation of uranyl silicates (uranophane) and minerals of the mixite group (zálesíite), present at the studied locality, points to neutralization of acidic supergene fluids in the mine dumps. Possibly, this environment later (precipitation of baryte) passed to neutral or  slightly basic conditions (precipitation of carbonates - malachite). The identified uranyl phosphates/arsenates (zeunerite/metazeunerite), typical of an acidic environment, are therefore rare.

Soubory

Abstrakt (PDF) - 224.82KB
Fulltext (PDF) - 2.82MB

Reference

Bartlett JR, Cooney RP (1989) On the determination of uranium-oxygen bond lengths in dioxouranium (IV) compounds by Raman spectroscopy. J Mol Struct 193: 295-300. https://doi.org/10.1016/0022-2860(89)80140-1

Belova LN (1975) Zony okislenija gidrotermaľnych mestoroždenij urana. 1-173, Nedra, Moskva

Belova LN (2000) Formation conditions of oxidation zones of uranium deposits and uranium mineral accumulations in the gipergenesis zone. Geol Ore Dep 42: 103-110

Biely a, Beňuška P, Bezák v, Bujnovský A, Halouzka R, Ivanička J, Kohút M, Klinec A, Lukáčik E, Maglay J, Miko O, Pulec M, Putiš M, Vozár J (1992) Geologická mapa Nízkych Tatier, 1 : 50 000. ŠGÚDŠ Bratislava

Buti D, Rosi F, Brunetti BG, Miliani C (2013) In-situ identification of copper-based green pigments on paintings and manuscripts by reflection FTIR. Anal Bioanal Chem 405: 2699-2711. https://doi.org/10.1007/s00216-013-6707-6

Colmenero F, Timón V, Bonales LJ, Cobos J (2018) Structural, mechanical and Raman spectroscopic characterization of the layered uranyl silicate mineral, uranophane-α, by density functional theory methods. Clay Miner 53: 337-392. https://doi.org/10.1180/clm.2018.27

Čejka J (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. In Burns PC, Finch R (ed.) Uranium: Mineralogy, Geochemistry and the Environment: 521-622. Mineral Soc Of America, Washington. https://doi.org/10.1515/9781501509193-017

Čejka J, Urbanec Z (1990) Secondary uranium minerals: The Mineralogy, Geochemistry and Crystal Chemistry of the Secondary Uranium (VI) Minerals. 68-70, Academia, Nakladatelství ČSAV, Praha

Dall`Aglio M, Craigini R, Locardi E (1974) Geochemichal factors controlling the formation of the secondary minerals of uranium. In: Formation of Uranium Ore Deposits: 33-48, International Atomic Energy Agency, Vienna

Daniel J (1999) Záverečná správa: Revízne a ukončujúce práce na rádioaktívne suroviny, Čiastková správa: Zhodnotenie geologických prác na U rudy v oblasti stredoslovenských neovulkanitov. Ministerstvo životného prostredia SR, sekcia geológie a prírodných zdrojov. Bratislava URANPRES - s.r.o. Spišská Nová Ves, 195

Drnzík E (1969) O zrudnení typu meďnatých pieskovcov v perme melafýrovej série na severovýchodných svahoch Nízkych Tatier. Miner Slov 1: 7-38

Emsley J (1980) Very strong hydrogen bonding. Chem Soc Rev 9: 91-124

Ferenc Š (2002) Uranium mineralization in the Permian volcanic rocks at the Kravany, Kozie chrbty Mts. Western Carpathians, Slovac Republic-information. In: Uranium Deposit: From their genesis to thier environmental aspect: 49-52

Ferenc Š (2018) Výskum vybraných genetických typov mineralizácie vo veporskom pásme (veporikum, hronikum). Habilitačná práca. PRF UK, Bratislava, 56

Ferenc Š, Biroň A, Sejkora J, Sýkorová M (2017) Fosfouranylit z oxidačnej zóny žilnej kremenno-apatitovo-REE-U mineralizácie v Majerskej doline pri Čučme (Slovenské rudohorie, gemerikum). Bull Mineral Petrolog 25: 23-32

Ferenc Š, Biroň A, Mikuš T, Spišiak J, Budzák Š (2018) Initial replacement stage of primary uranium (UIV) minerals by supergene alteration: association of uranyl-oxide hydroxy-hydrates and “calciolepersonnite“ from the Krátka Dolina Valley (Gemerská Poloma, Gemeric Unit, Western Carpathians, Slovakia). J Geosci 63: 277-291. https://doi.org/10.3190/jgeosci.268

Ferenc Š, Hoppanová E, Kopáčik R, Mikuš T, Budzák Š (2020) Supergénne minerály stratiformnej U-Cu mineralizácie pri Spišskej Teplici (hronikum, Kozie chrbty, východné Slovensko). Bull Mineral Petrolog 28: 295-306. https://doi.org/10.46861/bmp.28.295

Ferenc Š, Mikuš T, Spišiak J, Milovská S (2019) Supergene minerals in quartz ± fluorapatite hydrothermal veins with U-Mo and U-REE mineralization near Čučma (Gemeric Unit, Western Carpathians, eastern Slovakia): preliminary study. In: Ondrejka M, Fridrichová J (eds.), Mineralogicko-petrologická konferencia Petros 2019, Zborník recenzovaných abstraktov a príspevkov (29.-30. máj 2019): 17-19. UK Bratislava

Ferenc Š, Rojkovič I, Maťo Ľ (2003) Uranylové minerály Západných Karpát. Zbor konf Mineralogie Českého masívu a Západných Karpát (Olomouc a Horní Údolí): 17-23. Univerzita Palackého Olomouc

Finch R, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns PC, Finch R (ed.), Uranium: Mineralogy, Geochemistry, and the Environment: 91-179. Mineralogical Society of America, Washington, DC. https://doi.org/10.1515/9781501509193-008

Finch RJ, Ewing RC (1992) The corrosion of uraninite under oxidizing conditions. J Nucl Mater 190: 133-156

Frondel C (1958) Systematic mineralogy of uranium and thorium. US Geol Survey Bull 1064: 1-400

Frost RL, Čejka J, Weier ML, Martens WN (2006a) Molecular structure of the uranyl silicates - a Raman spectroscopic study. J Raman Spectrosc 37: 538-551. https://doi.org/10.1002/jrs.1430

Frost RL, Čejka J, Weier ML, Martens WN (2006b) Raman spectroscopy study of selected uranophanes. J Mol Struct 788: 115-125. https://doi.org/10.1016/j.molstruc.2005.11.025

Gao J, Yuan X (2020) Vibrational investigation of pressure-induced phase transition of hydroxycarbonate malachite Cu2(CO3)(OH)2. Minerals 10: 14. https://doi.org/10.3390/min10030277

Hoppanová E (2020) Supergénne alterácie stratiformnej U-Cu mineralizácie v mladšom paleozoiku hronika Kozích chrbtov a Nízkych Tatier. MS, diplomová práca, FPV UMB Banská Bystrica, 88

Černikov AA (1981) Povedenie urana v zone gipergeneza. 1-208, Nedra, Moskva

Chernorukov NG, Kortikov VE (2002) Synthesis and study of Sr[HSiUO6]2·2H2O and Ba[HSiUO6] 2·2H2O. Radioch 44: 446-451

Koděra M (1974) Mineralógia rádioaktívnych minerálov a ich vzťah k polymetalickej mineralizácii v stredoslovenských neovulkanitoch. MS, ŠGÚDŠ - Geofond Bratislava Eč. 57411

Kopáčik R, Ferenc Š (2017) Uránová mineralizácia pri Brezne (veporikum): predbežné výsledky. Zbor konf PETROS 2017 (Bratislava): 24-27. Univerzita Komenského Bratislava

Krivovichev S, Plášil J (2013) Mineralogy and crystallography of uranium. In: Burns PC, Sigmon GE (2013) Uranium: From Cradle to Grave. Canada: Mineralogical Association of Canada Short Courses 43: 15-119

Kubatko KA, Burns PC (2006) A novel arrangement of silicate tetrahedra in the uranyl silicate sheet of oursinite, (Co0.8Mg0.2)[(UO2)(SiO3OH)]2(H2O)6. Am Mineral 91: 333-336. https://doi.org/10.2138/am.2006.1613

Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds.): Highlights in Mineralogical Crystallography, 1-30. W. De Gruyter Berlin. https://doi.org/10.1515/9783110417104-003

Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42: 547-569. https://doi.org/10.1016/0016-7037(78)90001-7

Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatsh Chem 130: 1047-1059. https://doi.org/10.1007/bf03354882

Miliani C, Rosi F, Daveri A, Brunetti BG (2012) Reflection infrared spectroscopy for the non-invasive in situ study of artists´pigments. Appl Phys A 106: 295-307. https://doi.org/10.1007/s00339-011-6708-2

Mindat. Prístup 11.8. 2020 na adrese https://www.mindat.org/min-7026.html

Novotný L, Badár J (1971) Stratigrafia, sedimentológia a zrudnenie mladšieho paleozoika severovýchodnej časti Nízkych Tatier. Miner Slov 3: 23-36

Olmi F, Sabelli C, Trosti FR (1991) A contribution to the crystal chemistry of mixite group minerals from Sardinia (Italy). N Jb Miner, Mh: 487-499

Pekov I, Chukanov NV, Zadov AE, Voudouris P, Magganas A, Katerinopoloulos A (2011) Agardite-(Nd) NdCu6 (AsO4)3(OH)6·3H2O from the Hilarion Mine, Lavrion, Greece: Mineral description and chemical relations with other members of the agardite-zálesíite solid-solution system. J Geosci 56: 249-255. https://doi.org/10.3190/jgeosci.099

Plášil J (2018) Structural complexity of uranophane and uranophane-β: implications for their formation and occurence. Eur J Miner 30: 253-257. https://doi.org/10.1127/ejm/2017/0029-2691

Plášil J, Hloušek J, Kasatkin A (2014) Pozoruhodný výskyt metaťujamunitu a minerálů mixitové skupiny na Dušní žíle (Geister), Jáchymov (Česká republika). Bull Mineral Petrolog Odd Nár Muz (Praha) 22: 215-220

Plášil J, Sejkora J, Čejka J, Škoda R, Goliáš V (2009) Supergene mineralization of the Medvědín uranium deposit, Krkonoše Mountains, Czech Republic. J Geosci 54: 15-56. https://doi.org/10.3190/jgeosci.029

Polák Ľ, Ferenc Š, Biroň A, Sýkorová M (2016) Uranofán zo Seliec pri Banskej Bystrici (Starohorské vrchy, Slovenská republika). Bull Mineral Petrolog 24: 178-182

Polák Ľ, Ferenc Š, Mikuš T, Sejkora J (2017) Nové údaje o uranylových mineráloch z lokality Selce pri Banskej Bystrici (severné veporikum, Slovenská republika). Bull Mineral Petrolog 25: 162-169

Read K, Black S, Buckby T, Hellmuth KH, Marcos N, Siitari-Kauppi M (2008) Secondary uranium mineralization in southern Finland and its relationship to recent glacial events. Global Planet Change 60: 253-249. https://doi.org/10.1016/j.gloplacha.2007.02.006

Rojkovič I (1975) Geochemical characterization of U-Cu-Pb mineralization in the Permian of the Choč Nappe in the Vikartovský chrbát area. Geol Zbor Geol Carpath 26: 105-114

Rojkovič I (1995) Uránová mineralizácia v permských horninách Západných Karpát. Habilitačná práca, Bratislava 1995

Rojkovič I (1997) Uranium mineralization in Slovakia. 1-117, Comenius University, Bratislava

Rojkovič I (1998) Stratiformná U-Cu mineralizácia v perme Nízkych Tatier. Miner Slov 30: 66-71

Sejkora J, Škácha P, Čejka J (2019) REE-bohatý zálesíit z Bělovsi u Náchoda (Česká republika). Bull Mineral Petrolog 27: 297-303

SpectraBase. Prístup 25. 9. 2020 na adrese http://spectrabase.com/spectrum/ENlrYngNX61

Schmidt M, Lutz HD (1993) Hydrogen bonding in basic copper salts: a spectroscopic study of malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4. Phys Chem Miner 20: 27-32. https://doi.org/10.1007/bf00202247

Stoilova D, Koleva V, Vassileva V (2002) Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3) - hydrozincite (Zn5(OH)6(CO3)2) series. Spectrochim Acta A 58: 2051-2059. https://doi.org/10.1016/s1386-1425(01)00677-1

Stohl FV, Smith DK (1981) The crystal chemistry of the uranyl silicate minerals. Am Mineral 66: 610-625

Števko M, Sejkora J, Malíková R (2018) Nové údaje o supergénnych mineráloch z ložiska Banská Štiavnica (Slovenská republika). Bull Mineral Petrolog 26: 90-101

Števko M, Sejkora J, Plášil J (2012) Supergénna uránová mineralizácia na ložisku Banská Štiavnica (Slovenská republika). Bull mineral-petrolog Odd Nár Muz (Praha) 20: 110-120

Tulis J, Novotný L (1998) Zhodnotenie geologických prác na U rudy v mladšom paleozoiku hronika v severnej časti Nízkych Tatier a Kozích chrbtov. MS, archív ŠGÚDŠ - Geofond Bratislava Eč. 82752

Veselý Z, Badár J (1984) Malá uránová ložiská v Západných Karpatoch. Geol Hydrometal Uran 8: 3-36

Viswanathan K, Harnett O (1986) Refined crystal structure of beta-uranophane, Ca(UO2)2(SiO3OH)2·5H2O. Am Mineral 71: 1489-1493

Vozárová A, Vozár J (1988) Late Paleozoic in West Carpathians. 1-314, Geol Inst of D. Štúr, Bratislava