ISSN

print 2570-7337
online 2570-7345

Hydrotermální mineralizace s dickitem v ordovických jílovcích bohdaleckého souvrství z tunelu metra linky D v Praze na Pankráci

Dickite-bearing hydrothermal mineralization in Ordovician claystones of the Bohdalec Formation from the tunnel of subway Line D in Prague-Pankrác


DOI: https://doi.org/10.46861/bmp.28.116

Klíčová slova

Abstrakt

Two types of hydrothermal veins were found in the Ordovician claystones of the Bohdalec Formation (Barrandian, Prague Basin) during the excavation of tunnel of subway Line D at Prague-Pankrác site. The first type is represented by short hair-thin veinlets of various directions filled by dickite. The second type comprises thicker NNW - SSE trending veins with prevailing quartz, which cut the host rocks across the whole width of the gallery. In addition to quartz, they contain also dickite, chlorite (thuringite-chamosite), carbonates of dolomite-ankerite series (Dol37.5-44.0Ank42.0-46.8Ktn10.9-16.1), calcite, fluorapatite, pyrite (with up to 0.5 wt. % Mn), galena (with ~0.6 wt. % Se) and sphalerite (with ~1 wt. % Fe and up to 0.35 wt. % Sn and 0.36 wt. % Cu). Except for calcite, which forms younger veinlets in older quartz fill, all other mentioned minerals form minute inclusions enclosed in quartz, which are arranged parallel with outer margin of the vein. Based on mineral assemblage and chemical composition of individual minerals, highly variable crystallization temperatures (<100 - 350 °C) can be interpreted in various mineralogically distinct domains of the quartz vein. We assume a polyphase, episodic origin of individual domains of the vein fill, close to the crack-seal mechanism, which was bound to successive evolution of the adjacent fault structure. The maximum formation temperatures exceeding by a value of ca. 100 °C the highest reported temperatures of Variscan thermal overprint of Lower Paleozoic rocks of the Prague Basin are explained by production of friction heat in the fault structure. It is probable that part of parent fluids originated from sedimentary iron ores occurring in the host Ordovician sedimentary sequence.

Soubory

Abstrakt (PDF) - 191.26KB
Fulltext (PDF) - 1.74MB

Reference

Bayliss P (1975) Nomenclature of the trioctahedral chlorites. Can Mineral 13:178-180

Buriánek D, Bubík M, Všianský D (2019) Nový pohled na genezi ordovické oolitické rudy z ložiska Skalka u Mníšku pod Brdy (pražská pánev, Barrandien). Geol Výzk Mor Slez 26(1-2): 80-89. https://doi.org/10.5817/gvms2019-1-2-80

Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23: 471-485. https://doi.org/10.1180/claymin.1988.023.4.13

Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim Cosmochim Acta 73: 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045

Dolníček Z, Nepejchal M (2019) Sylvanit, clausthalit a doprovodné minerály ze železnorudného ložiska typu Lahn-Dill Pittenwald u Skal u Rýmařova. Bull Mineral Petrolog 27(1): 82-88

Dolníček Z, Kropáč K, Janíčková K, Urubek T (2012) Diagenetic source of fluids causing the hydrothermal alteration of teschenites in the Silesian Unit, Outer Western Carpathians, Czech Republic: Petroleum-bearing vein mineralization from the Stříbrník site. Mar Petrol Geol 37: 27-40. https://doi.org/10.1016/j.marpetgeo.2012.06.004

Dolníček Z, Kandrnál L, Ulmanová J, Vratislavská E, Hojač P (2019a) Historická těžba pelosideritů na lokalitě Koryčanská cesta u Moravan, jižní Chřiby. Bull Mineral Petrolog 27: 304-316

Dolníček Z, Ulmanová J, Sejkora J, Škácha P (2019b) Ne­rudní minerály Au-Ag-Sb-Bi-Te mineralizace z ložiska Bytíz, příbramský rudní revír. Sborník abstraktů Otevřeného kongresu ČGS a SGS, Beroun: 20

Dolníček Z, Kandrnál L, Ulmanová J, Vratislavská E, Hojač P (2020) Mineralogická charakteristika fosforitové konkrece s rodochrozitem z lokality Tabarky, severní Chřiby. Bull Mineral Petrolog 28: 35-43

Franců E, Mann U, Volk H (1998) Model of burial and thermal history of the Tobolka-1 borehole profile in the Prague basin. Acta Univ Carol, Geol 42: 248-249

Halavínová M, Melichar R, Slobodník M (2008) Hydrothermal veins linked with the Variscan structure of the Prague Synform (Barrandien, Czech Republic): resolving fluid-wall rock interaction. Geol Quart 52(4): 309-320

Havlíček V (1982) Ordovician in Bohemia: Development of the Prague Basin and its benthic communities. Sbor geol Věd, Geol 37: 10-136

Hemley JJ, Montoya JW, Marinenko JW, Luce RW (1980) Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ Geol 75: 210-228. https://doi.org/10.2113/gsecongeo.75.2.210  

Hurai V, Kihle J, Kotulová J, Marko F, Swierczewska A (2002) Origin of methane in quartz crystals from the Tertiary accretionary wedge and fore-arc basin of the Western Carpathians. Appl Geochem 17: 1259-1271. https://doi.org/10.1016/s0883-2927(01)00128-7  

Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2002) Geologická minulost České republiky. Academia Praha

Laugier J, Bochu B (2011) LMGP-suite of programs for the interpretation of X-ray experiments. http://www.ccp14.ac.uk/tutorial/lmgp. Přístup duben 2011

Liard J (1988) Chlorites: metamorphic petrology. In: Bailey SW (ed) Hydrous phyllosilicates. Rev Mineral 19: 405-447. https://doi.org/10.1515/9781501508998-016

Melichar R (2004) Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30: 167-187

Melka K (1965) Návrh na klasifikaci chloritových minerálů. Věst Ústř Úst geol 40: 23-27

Milovský R (2000) Mechanizmy presunu superficiálnych príkrovov Centrálnych Západných Karpát: úloha pretlaku fluíd na ich báze. MS, disertační práce, Geol Úst SAV Bratislava

Nekrasov IJ, Sorokin VI Osadchiy JG (1981) Causes of increased tin capacity of sphalerite. Int Geol Rev 23(2): 173-178. https://doi.org/10.1080/00206818209467228

Petránek J, Durembergová D, Melka K (1988) Oolitic iron ore deposits at Chrustenice (Ordovician, Bohemia). Sborn geol věd, Lož Geol Mineral 28: 9-55

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam Analysis: 104-106. San Francisco Press, San Francisco

Povondra P, Slánský E (1964) Nové výskyty dickitu v Československu. Acta Univ Carol, Geol 1964: 25-42

Ramsay JG (1980) The crack-seal mechanism of rock deformation. Nature 284: 135-139. https://doi.org/10.1038/284135a0

Röhlich P (2007) Structure of the Prague Basin: The deformation diversity and its causes (the Czech Republic). Bull Geosci 82(2): 175-182. https://doi.org/10.3140/bull.geosci.2007.02.175

Rocha J, Paz FAA, Sardo M, Mafra L (2018) Revisiting the crystal structure od dickite: X-ray diffraction, solid-state NMR, and DFT calculations study. Am Mineral 103: 812-818. https://doi.org/10.2138/am-2018-6294

Sandler A, Suchý V (2004) Deep burial diagenesis of clays in the Tobolka-1 borehole, Czech Republic. In: Annual Meeting of the Israel Society for Clay Research 2004: 22-23. Jerusalem

Shikazono N, Nakata M, Tokuyama E (1994) Pyrite with high Mn content from the Nankai Trough formed from subduction-induced cold seepage. Mar Geol 118: 303-313. https://doi.org/10.1016/0025-3227(94)90090-6

Slobodník M, Melichar R, Hurai V, Bakker RJ (2012) Litho-stratigraphic effect on Variscan fluid flow within the Prague synform, Barrandian: Evidence based on C, O, Sr isotopes and fluid inclusions. Mar Petrol Geol 35: 128-138. https://doi.org/10.1016/j.marpetgeo.2012.01.003

Stormer JCJr, Pierson MJ, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis. Am Mineral 78: 641-648

Suchý V, Dobeš P, Filip J, Stejskal M, Zeman A (2002) Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348: 25-50. https://doi.org/10.1016/s0040-1951(01)00248-7

Suchý V, Rozkošný I (1996) Diagenesis of clay minerals and organic matter in the Přídolí Formation (Upper Silurian), the Barrandian Basin, Czech Republic: first systematic survey. Acta Univ Carol, Geol 38: 401-409

Trdlička Z, Hoffman V (1975) Untersuchungen der chemischen Zusammensetzung der Gangkarbonate von Kutná Hora (ČSSR). Freiberg Forschungshefte 6: 29-81

Urubek T, Dolníček Z, Kropáč K (2014) Genesis of syntectonic hydrothermal veins in the igneous rock of teschenite association (Outer Western Carpathians, Czech Republic): growth mechanism and origin of fluids. Geol Carpath 65: 419-431. https://doi.org/10.1515/geoca-2015-0003

Wiewióra A, Weiss Z (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Miner 25: 83-92. https://doi.org/10.1180/claymin.1990.025.1.09

Záruba Q (1948) Geologický podklad a základové poměry vnitřní Prahy. Geologický ústav Československé republiky, Praha: 1-83

Zhang Z, Liu S, Wu J (2008) Characteristic and the formation conditions of chlorite in Xiazhuang uranium ore-field, South China. Geochim Cosmochim Acta 72: 1092

Zotov A, Mukhamet-Galeev A, Schott J (1998) An experimental study of kaolinite and dickite relative stability at 150-300 °C and the thermodynamic properties of dickite. Am Mineral 86: 516-524. https://doi.org/10.2138/am-1998-5-611