New data on uranyl sulphate mineral shumwayite from Jáchymov - a Raman spectroscopy study
Klíčová slova
Abstrakt
Jáchymov (Czech Republic) is the second locality of hydrated uranyl-sulphate mineral shumwayite in the world. Shumwayite occurs as rich dark orange crystalline coatings composed of crystals - thin elongated blades up to 100 μm in size, but usually as thin tables only of about 20 μm in size, on strongly weathered fragment of gangue. It is associated with rietveldite, rozenite and as yet unnamed Al-uranyl sulphate, uranyl phosphate and Fe-Zn uranyl sulphate-vanadate. Individual shumwayite crystals are translucent to transparent with vitreous lustre. It does not exhibit fluorescence under either long- or short-wave ultraviolet radiation. The quantitative chemical composition of shumwayite sample is in line with the ideal stoichiometry of UO2:SO4 = 1:1; but also minor contents of Fe and Zn were identified. Shumwayite is monoclinic, the space group P21/c, with the unit-cell parameters refined from X-ray powder diffraction data: a 6.738(2), b 12.482(5), c 16.865(6) Å, β 91.00(3)° and V 1418.3(7) Å3. Raman spectroscopy documented the presence of both (UO2)2+ and (SO4)2- units in the crystal structure of shumwayite. Multiple bands connected with vibrations of water molecules suggest that molecular water is involved in different coordination environments in the structure of shumwayite with distinct hydrogen-bond strengths.
Soubory
Reference
Bartlett JR, Cooney RP (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. J Mol Struct 193: 295-300
Brugger J, Meisser N, Burns PC (2003) Contribution to the mineralogy of acid drainage of uranium minerals: marecottite and the zippeite-group. Am Miner 88(4): 676-685
Burnham Ch W (1962) Lattice constant refinement. Carnegie Inst Washington Year Book 61: 132-135
Čejka J (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Rev Mineral 38: 521-622
Čejka J, Sejkora J, Mrázek Z, Urbanec Z., Jarchovský T (1996) Jáchymovite, (UO2)8(SO4)(OH)14.13H2O, a new uranyl mineral from Jáchymov, the Krušné Hory Mts., Czech Republic, and its comparison with uranopilite. N Jb Miner, Abh 170: 155-170
Fernandes HM, Veiga LHS, Franklin MR, Prado VCS,Taddei JF (1995) Environmental impact assessment of uranium mining and milling facilities; a study case at the Poços de Caldas uranium mining and milling site, Brazil. J Geochem Explor 52(1-2): 161-173
Finch RJ, Murakami T (1999) Systematics and paragenesis of uranium minerals. Rev Mineral 38: 91-180
Hloušek J, Plášil J, Sejkora J, Škácha P (2014) News and new minerals from Jáchymov, Czech Republic (2003 - 2014). Bull mineral-petrolog Odd Nár Muz (Praha) 22: 155-181 (in Czech)
Kampf AR, Plášil J, Kasatkin AV, Marty J, Čejka J, Lapčák L (2017a) Shumwayite, [(UO2)(SO4)(H2O)2]2·H2O, a new uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineral Mag 81(2): 273-285
Kampf AR, Sejkora J, Witzke T, Plášil J, Čejka J, Nash BP, Marty J (2017b) Rietveldite, Fe(UO2)(SO4)2(H2O)5, a new uranyl sulfate mineral from Giveaway-Simplot mine (Utah, USA), Willi Agatz mine (Saxony, Germany) and Jáchymov (Czech Republic). J Geosci 62(2): 107-120
Krivovichev SV, Plášil J (2013) Mineralogy and crystallography of uranium. In: Burns PC, Sigmon GE (eds) Uranium: From Cradle to Grave. Mineralogical Association of Canada Short Courses 43: 15-119
Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H´´´O hydrogen bond lengths in minerals. Monatsh Chem 130: 1047-1059
Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds Part A Theory and applications in inorganic chemistry. John Wiley and Sons Inc. Hoboken, New Jersey
Ohwada K (1976) Infrared spectroscopic studies of some uranyl nitrate complexes. J Coor Chem 6: 75-80
Ondruš P (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enchede.
Ondruš P, Veselovský F, Hloušek J, Skála R, Frýda J, Čejka J, Gabašová A (1997a) Secondary minerals of the Jáchymov (Joachimsthal) ore district. J Czech Geol Soc 42: 3-76
Ondruš P, Veselovský F, Skála R, Císařová I, Hloušek J, Frýda J, Vavřín I, Čejka J, Gabašová A (1997b) New naturally occurring phases of secondary origin from Jáchymov (Joachimsthal). J Czech Geol Soc 42: 77-107
Ondruš P, Veselovský F, Gabašová A, Drábek M, Dobeš P, Malý K, Hloušek J, Sejkora J (2003a) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48: 157-192
Ondruš P, Veselovský F, Gabašová A, Hloušek J, Šrein V (2003b) Geology and hydrothermal vein system of the Jáchymov (Joachimsthal) ore district. J Czech Geol Soc 48: 3-18
Ondruš P, Veselovský F, Gabašová A, Hloušek J, Šrein V (2003c) Supplement to secondary and rock-forming minerals of the Jáchymov ore district. J Czech Geol Soc 48: 149-155
Ondruš P, Veselovský F, Gabašová A, Hloušek J, Šrein V, Vavřín I, Skála R, Sejkora J, Drábek M (2003d) Primary minerals of the Jáchymov ore district. J Czech Geol Soc 48: 19-147
Plášil J (2014) Oxidation–hydration weathering of uraninite: the current state-of-knowledge. J Geosci 59: 99-114
Plášil J, Sejkora J, Škoda R, Škácha P (2014) The recent weathering of uraninite from the Červená vein, Jáchymov (Czech Republic): a fingerprint of the primary mineralization geochemistry onto the alteration association. J Geosci 59: 223–253
Pouchou J, Pichoir F (1985) „PAP“ (jrZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press. San Francisco
Van der Putten N, Loopstra BO (1974) Uranyl sulphate 2.5 H2O, UO2SO4·2.5H2O. Cryst Struct Comm 3: 377-380
Vlček V, Čejka J, Císařová I, Goliáš V, Plášil J (2009) Crystal structure of UO2SO4·2.5H2O: Full anisotropic refinement and vibration characteristics. J Mol Struct 936(1-3): 75-79
Volod´ko LV, Komyak AI, Umreyko DS (1981) Uranyl compounds, Spectra, Structure. Vol. 1, Belorussian State University Minsk (in Russian).
Yvon K, Jeitschko W, Parthé E (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J Appl Cryst 10: 73-74