Molecular structure of tangdanite from the Jánská vein, Příbram (Czech Republic) - a vibrational spectroscopy study
Klíčová slova
Abstrakt
We have undertaken a study of the copper arsenate sulphate mineral tangdanite from the Jánská vein, Příbram, central Bohemia (Czech Republic). Tangdanite has been found on a few specimens and forms individual radial aggregates up to 3 mm in size composed of platy crystals with perfect cleavage. Tangdanite aggregates usually grow on chrysocolla, or more rarely on hematitized rock. The quantitative chemical analyses of tangdanite agrees well with the proposed ideal composition and corresponds to the following empirical formula: Ca1.96Cu9.01Zn0.02(AsO4)4.06(PO4)0.01 (SO4)0.51(OH)8.76·9H2O (on the basis of 11 cations pfu). Tangdanite is monoclinic, space group C2/c, with unit-cell parameters: a 54.3218(8), b 5.5685, c 10.469 Å, β 96.294°, V 3147.7 Å3; due to strong preferred orientation on sample, only a parameter was refined. Raman bands at 3486, 3046 and 2907 cm-1 and infrared bands at 3475, 3310 and 3015 cm-1 are assigned to the n OH stretching of structurally distinct differently hydrogen bonded water molecules and hydroxyls. A Raman band at 1621 cm-1 and infrared bands at 1662 and 1611, 1601 cm-1 are assigned to the n2 (d) H2O bending vibrations of structurally distinct hydrogen bonded water molecules. Infrared bands at 1120, 1083, 1065 and 1027 cm-1 are assigned to the n3 (SO4)2- antisymmetric stretching and the n1 (SO4)2- symmetric stretching vibrations. Raman band at 997 cm-1 and infrared band at 981 cm-1 are connected with the n1 (SO4)2- symmetric stretching vibration. Infrared band at 946 cm-1 may be connected with (to) the d M-OH bending vibration. A dominant Raman band at 850 cm-1 is attributed to (with) the n1 (AsO4)3- symmetric and a Raman band at 801 cm-1 and an infrared band at 791 cm-1 to (with) the n3 (AsO4)3- antisymmetric stretching vibrations. Infrared bands at 668 and 610 cm-1 may be connected to libration modes of water molecules and to the n4 (d) (SO4)2- bending vibrations. A Raman band at 509 cm-1 and an infrared band at 543 cm-1 are assigned to the n4 (d) (SO4)2- triply degenerate bending vibrations, Raman bands at 467 and 415 cm-1 and infrared bands and shoulders at 481, 465 and 422 cm-1 are connected with the n2 (d) (SO4)2- bending and to the n4 (d) (AsO4)3- bending vibrations. Raman bands at 382, 366 and 314 cm-1 may be related to the n2 (d) (AsO4)3- bending vibrations. A Raman band at 268 cm-1 may be assigned to the n (O-H´´´O) stretching vibration. Raman bands at 171, 154, 127, 92 and 55 cm-1 are assigned to lattice modes. Raman and infrared spectroscopy confirms absence of (CO3)2- groups in the crystal structure of studied tangdanite.
Soubory
Reference
Berry LG (1948) Tyrolite, higginsite, and cornwallite. Am Mineral 33:193
Burnham Ch W (1962) Lattice constant refinement. Carnegie Inst Washington Year Book 61: 132-135
Church AH (1895) A chemical study of some native arsenates and phosphates. Mineral Mag 11: 1-12
Dufresne WJ, Rufledt CJ, Marshall CP (2018) Raman spectroscopy of the eight natural carbonate minerals of calcite structure. J Raman Spectrosc 49(12): 1999-2007
Frost RL, Scholz R. López A (2015) Raman and infrared spectroscopic characterization of the arsenate-bearing mineral tangdanite – and in comparison with the discredited mineral clinotyrolite. J Raman Spectrosc 46: 920-926
Guillemin C (1956) Contribution à la minéralogie des arsenates, phosphates et vanadates de cuivre. Bull Soc Fr Mineral Crist 79: 7-95
Haidinger W (1845) Handbuch der bestimmenden Mineralogie. Wien
Jarka P (2011) The dating of the minerals of uranium-polymetallic mineralization of the Jánská vein, Příbram-Březové Hory, ČR, using alpha-spectrometric determination of the radioactive disequilibrium of isotope pairs of uranium decay series. Unpublished MSc. Thesis. Charles University. Prague. 52 pp
Jirásek J, Čejka J, Vrtiška L, Matýsek D, Ruan X, Frost LR (2017) Molecular structure of the phosphate mineral koninckite - a vibrational spectroscopic study. J Geosci 62: 271-279
Krivovichev SV, Chernyshov DY, Döblin N, Armbruster T, Kahlenberg V, Kaindl R, Ferraris G, Tessadri R, Kaltenhauser G (2006) Crystal chemistry and polytypism of tyrolite. Am Mineral 91: 1378-1384
Li Yi, Lai Lairen, Zhou Weining, Qin Chaoke (2004) Mineralogical characteristics and geological significance of tyrolite. Acta Miner Sinica 24: 378-380
Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H´´´O hydrogen bond lengths in minerals. Monat Chem 130: 1047-1059
Ma Zhesheng, Li Guowu, Chukanov NV, Poirier G, Shi Necheng (2014) Tangdanite, a new mineral species form the Yunnan Province, China and the discreditation of “clinotyrolite”. Mineral Mag 78(3): 559-569
Ma Zhesheng, Qian Rongyao, Peng Zhizhong (1980) Clinotyrolite: a new mineral of hydrous copper arsenate discovered in Dongchuan, Yunnan. Acta Geol Sinica 54: 134-143
Mielke Z, Ratajczak H (1972) The force constants and vibrational frequencies of orthoarsenates. Bulletin de l´Academie Polonaise des Sciences, Série des Sciences Chimiques 20: 265-270
Mikuš T, Patúš M, Luptáková J, Bancík T, Biroň A (2017) Mineralogical characteristics of the secondary calcium carbonates from the Špania Dolina - The first occurrence of monohydrocalcite in ore deposits in Slovakia. Bull Mineral Petrolog 25(2): 318-326
Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds Part A Theory and applications in inorganic chemistry. John Wiley and Sons Inc. Hoboken, New Jersey
Ondruš P (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum: 133-136, 297-300, EPDIC-2. Enchede.
Palache C, Berman H, Frondel C (1951) Dana´s System of Mineralogy, 7th Edition. New York
Pauliš P, Vrtiška L, Fuchs P, Adamovič J, Čejka J, Pour O, Malíková R (2019) Iriginite, chistyakovaite and metazeunerite from the 5. květen adit at Vrchoslav in Krušné hory Mts. (Czech Republic). Bull Mineral Petrolog 27(1): 136-147
Plášil J, Čejka J, Sejkora J, Škácha P, Goliáš V, Jarka P, Laufek F, Jehlička J, Němec I, Strnad L (2010a) Widenmannite, a rare uranyl lead carbonate: occurrence, formation and characterization. Mineral Mag 74: 97-110
Plášil J, Palatinus L, Rohlíček J, Houdková L, Klementová M, Goliáš V, Škácha P (2014) Crystal structure of lead uranyl carbonate mineral widenmannite: Precession electron-diffraction and synchrotron powder-diffraction study. Am Mineral 99: 276-282
Plášil J, Sejkora J, Čejka J, Škácha P, Goliáš V, Ederová J (2010b) Characterization of phosphate-rich metalodèvite from Príbram, Czech Republic. Can Mineral 48: 113-122
Pouchou J, Pichoir F (1985) „PAP“ (jrz) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press. San Francisco
Sejkora J, Čejka J, Škácha P, Gabašová A, Novotná I (2003) Minerals of the zippeite group from the Jánská vein, Březové Hory, Příbram. Bull Mineral Petrolog 11: 183-189
Sejkora J, Tvrdý J, Čejka J, Vrtiška L, Dolníček Z (2019) Bendadaite from Krásno near Horní Slavkov (Czech Republic), description and Raman spectroscopy. Bull Mineral Petrolog 27(1): 63-71
Škácha P, Goliáš V, Sejkora J, Plášil J, Strnad L, Škoda R, Ježek J (2009) Hydrothermal uranium-base metal mineralization of the Janská vein, Březové Hory, Příbram, Czech Republic: lead isotopes and chemical dating of uraninite. J Geosci 54(1): 1-13
Števko M, Sejkora J, Bačík P (2011) Mineralogy and origin of supergene mineralization at the Farbiště ore occurrence near Poniky, central Slovakia. J Geosci 56: 273-298
Vansant FK, Van Der Veken BJ, Desseyn HO (1973) Vibrational analysis of arsenic and its anions. I. Description of the Raman spectra. J Molec Struct 15: 425-437
Yvon K, Jeitschko W, Parthé E (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J Appl Cryst 10: 73-74