ISSN

print 2570-7337
online 2570-7345

Mineralogy and genesis of rock fragments with pegmatite texture from serpentinite eluvium at Nová Ves near Oslavany


Volume 21, issue 2 (2013), pages 210-222

Keywords

Abstract

The studied locality belongs to peridotite body in the Gföhl Unit (Moldanubian Zone). These peridotites underwent high degree of serpentinisation and are locally penetrated by pegmatites. Rock fragments with pegmatite texture were found in eluvia of isolated serpentinite body situated at Nová Ves. Three groups of samples (NV1, NV2 and NV3) distinct in their internal structure, mineral assemblages and chemical composition of minerals were distinguished:

  1. NV1 Kfs + Qtz + Plg ± Tur ± Chl ± Sme ± Tit ± (Zrn, Xtm, Mon)
  2. NV2 Plg ± Amf ± Preh ± Chl ± Czo ± Kfs ± Zrn ± (Ab, Ser, Tur)
  3. NV3 Plg + Tur ± Preh ± Chl ± Pmp ± Zeo ± Ba-Fsp ± Ap ± Zrn ± (Mol)

These three assemblages can be clearly distinguished by the basicity of plagioclase. Plagioclase varies from almost pure albite (NV1, An2-9), which is associated with quartz, through andesine (NV2, An38-42) to labradorite-bytownite (NV3, An69-82). The chemical composition of tourmalines and compositional trends from 3 distinct parageneses described above are also different. Tourmalines from NV1 samples are enriched in Al and exhibit dravitic composition. The composition of NV3 tourmalines corresponds to strongly magnesian dravite-uvite solid solution. On the other hand tourmalines from NV2 samples, which are very rare, represent the transitional composition between tourmalines from the NV1 and NV3 samples.

The original melt was enriched in Mg and Ca derived from the wall rocks during the contamination process, which led both to increased Mg and Ca contents in tourmaline as well as higher Ca contents in plagioclase. Hydrothermal fluids gave rise to abundant quartz dissolution and widespread plagioclase and frequent tourmaline replacement. Typical hydrothermal minerals include prehnite, chlorite and secondary K-feldspar.

The characteristics of rock fragments from Nová Ves are unique in several aspects, which are similar to the features observed at other localities of contaminated pegmatites hosted by serpentinite rocks such us Drahonín u Tišnova, Věžná I and II, Smrček, Věchnov, Heřmanov, Mohelno, Hrubšice.

Files

Abstract (PDF) - 197.52KB
Fulltext (PDF) - 4.06MB

References

Ackerman L., Zachariáš J., Pudilová M. (2007) P-T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. Int. J. Earth Sci. 96, 623-638.

Ahn J. H., Buseck P. R. (1998) Transmission elektron microscopy of muscovite alteration of tourmaline. Am. Mineral. 83, 535-541.

Bernard J. H., Čech F., Dávidová S., Dudek A., Fediuk F., Hovorka D., Kettner R., Koděra M., Kopecký L., Němec D., Paděra K., Petránek J., Sekanina J., Staněk J., Šímová M. (1981) Mineralogie Československa. 645 s., 2. vydání, Academia, Praha.

Cathelineau M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23, 471-485.

Coombs D. S., Nakamura Y., Vuagnat M. (1976) Pumpellyite–actinolite facies schists of the Taveyanne Formation near Loeche, Valais, Switzerland. J. Petrol. 17, 440-471.

Černý P. (1958) Desilikované pegmatity od Drahonína. Práce Brněnské zákl. ČSAV 370, 161-202.

Černý P. (1965) Mineralogie dvou pegmatitů ze serpentinitu ve Věžné. MS, kandidát. disert. práce, Praha.

Černý P., Fryer B. J., Chapman R. (2001) Apatite rom granitic pegmatite exocontacts in Moldanubian serpentinites. J. Czech Geol. Soc. 46, 1-2, 15-20.

Černý P., Novák M. (1992) Věžná near Nedvědice, a pegmatite dike of the beryl-columbite subtype penetrating serpentinite. In: Novák M.; Černý P. (eds): LEPIDOLITE 2000 International symposium on granitic pegmatites, Field trip guidebook, 27-32, Nové Město na Moravě.

Černý P., Povondra P. (1965) Harmotome from desilicated pegmatites at Hrubsice, western Moravia. Acta Univer. Carol., Geol., 1, 31-43.

Day H. W., Springer R. K. (2005) The first appearance of actinolite in the prehnite-pumpellyite facies, Sierra Nevada, California. Can. Mineral. 43, 89–104.

Deer W. A., Howie R. A., Zussman, J. (2001) Framework silicates: Feldspars. The Geol.Soc., London.

Dudek A., Weis J. (1963) Západomoravské krystalinikum. In: Sbor. XIV. sjezdu Společ. mineral. geol. (Brno), 5-18.

Frey M., Capitani C., Liu J. G. (1991) A new petrogenetic grid for low-grade metabasites. J. metam. Geol. 9, 497–509.

Gadas P., Novák M., Talla D., Vašinová Galiová M. (2012) Compositional evolution of grossular garnet from leucotonalitic pegmatite at Ruda Nad Moravou, Czech Republic; a complex EMPA, LA-ICP-MS, IR and CL study. Mineral. Petrol. 107(2), 311-326.

Henry D. J., Dutrow L. B. (1990) Ca substitution in Li-poor aluminous tourmaline. Can. Mineral. 28, 111-124.

Henry D. J., Dutrow B. L. (1996) Metamorphic tourmaline and its petrologic application.

Reviews in Mineralogy and Geochemistry 33, 503–557.

Hrazdil V. (2001) Minerální asociace alpských žil od Templštejna u Jamolic, západní Morava. Acta Mus. Moraviae, Sci. Geol. 86, 75 - 84.

Kalášek J. a kolektiv (1963) Vysvětlivky k přehledné geologické mapě ČSSR 1: 200 000, list M – 33 – XXIX Brno. Ústřední ústav geologický a ČSAV Praha, 256 s.

Karásek J. (1996) Opál z Nové Vsi u Oslavan. Minerál (Brno) 4, 243-247.

Karásek J. (1997) Poznámky k nalezištím a genezi moravských silicifikovaných dřev. Minerál (Brno) 3, 186 –188.

Karásek J. (1998) Krystalický vápenec a s ním spjatá hydrogeologická struktura u Senorad. Geol. Výzk. Mor. Slez. (Brno) 5, 80-81.

Komarneni S. (1989) Mechanisms of palygorskite and sepiolite alteration as deduced from solid-state 27Al and 29Si nuclear magnetic resonance spectroscopy. Clays and Clay Min. 37, 5, 469-473.

Kovář O., Losos Z. (2005) Artinit z hadcového lomu u Biskoupek u Oslavan, západní Morava - nový minerál pro Českou republiku. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 13, 1, 137-139. 

Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J.,Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Guo Y. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 35, 219-246.

London D. (2008) Pegmatites. Can. Mineral., Special Publication 10, 347.

London D. (2011) Experimental synthesis and stability of tourmaline: A historic overview. Can. Mineral. 49, 117-136.

Losos Z., Kovář O., Houzar S., Zeman J. (2013) Rare hydrated Mg-carbonate-hydroxide assemblage of serpentinite fissures in Hrubšice, western Moravia (Czech Republic): a genetic model of its formation. N. Jb. Miner. Abh. 190, 3, 253-263.

Morgan G. B., London D. (1987) Alteration of amphibolitic wallrocks around the Tanco rareelement pegmatite, Bernic Lake, Manitoba. Am. Mineral. 72, 1097-1121.

Morton A. C., Hallsworth C. (2007) Chapter 7 Stability of Detrital Heavy Minerals During Burial Diagenesis. Developments in Sedimentology 58, 215-245.

Novák M. (2005) Granitické pegmatity Českého masivu (Česká republika), geochemická a regionální klasifikace a geologický význam. Acta Mus. Moraviae, Sci. Geol. 90, 3-74.

Novák M., Černý P., Povondra P., Škoda R. (2003) Věžná near Nedvědice Beryl pegmatite. In: Novák M. (ed): LERM 2003 International symposium on light elements in rock forming minerals, Field trip guidebook, 31-37. Brno.

Novák M., Kadlec T., Gadas P. (2013) Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastějovice region. J. Geosci. 58, 21-47.

Novák M., Povondra P., Selway J. B. (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. Eur. J. Mineral. 16, 323-333.

Novák M., Selway J. B., Černý P., Hawthorne F. C., Ottolini L. (1999) Tourmaline of the elbaite-dravite series from an elbaite-subtype pegmatite at Bližná, southern Bohemia, Czech Republic. Eur. J. Mineral. 11, 557-568.

Novotný M. (1958) Uzavřeniny tmavých hornin ve světlých rulách u Kuřimské Nové Vsi na západní Moravě. Práce Brněnské zákl. ČSAV 7, 281-334, Brno.

Novotný M. (1962) K problematice tmavých horninových uzavřenin ve světlých moldanubických rulách. Folia Fac. Sci. Nat. Univ. Purk. Brun., Geol. 3, 1, 67-78, Brno.

Passaglia E., Gottardí G. (1973) Crystal chemistry and nomenclature of pumpellyites and julgoldites. Can. Mineral. 12, 219-223.

Rosický V., Kokta J. (1931) O povaze plagioklasů z pegmatitů, procházejících hadce na západní Moravě. Sbor. Přír. Spol. v Mor. Ostravě, 97–108.

Schiffman P., Liou J. G. (1980) Synthesis and stability relations of Mg-Al pumpellyite, Ca2Al5MgSi6O21(OH)7. J. Petrol. 21, 441–474.

Seki Y., Liou J. G. (1981) Recent studies on low-grade metamorphism. Mem. Geol. Soc. China 4, 207-228.

Sigvaldason G. E. (1962) Epidote and related minerals in two deep teothermal drill holes, Reykjavik and Hveragerdi, Iceland. U.S.G.S. Prof. Paper 450E, 77-79.

Vlasov K. A. (1952) Teksturno-paragenetičeskaja klassifikacija granitnych pegmatitov. Izv. AN SSSR, Ser. geol. 2, 30 – 55.

Whitney D. L., Evans, B. W. (2010) Abbreviations for names of rock-forming minerals. Am. Mineral. 95, 185-187.

Zane A., Weiss Z. (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rend. Fis. Acc. Lincei 9, 9, 51-56.