ISSN

print 2570-7337
online 2570-7345

Almandine-rich layers in the clastic sediments of the Saddle Member (Czech part of the Upper Silesian Basin


Volume 24, issue 2 (2016), pages 205-216

Keywords

Abstract

Layers rich in garnets were recognized in the prospecting boreholes of working districts Lazy and Doubrava near Karviná (Czech part of the Upper Silesian Basin). They are situated in the fine-grained conglomerates, sandy conglomerates, and sandstones of the Saddle Member of the Karviná Formation (Namurian). Single garnet grains can reach size up to 4 mm in diameter and in some cases form up to 20% of layers. Their stratigraphic distribution is highly irregular. An SEM investigation revealed that all garnets are faceted, with prevailing rhombic dodecahedral over cubic crystal habit. Unetched or slightly etched garnets are not present. Skeletal structures and cubic etch pits are frequent. An empty space 10 to 50 μm wide is situated around all garnets. Sometimes it is filled by secondary mineralization, namely microcrystals of quartz, fibrous clay mineral (possibly illite), mineral from the chlorite group, and dolomite-ankerite. Some etch pits are also filled by possible illite. Electron probe microanalysis shows that most of garnets are homogenous almandines with significant admixture of pyrope component, prevailing pyrope component is rare. Spessartine and grossular content is highly variable, content of Cr2O3 is < 0.1% and TiO2 content is below the detection limit. Chemical variability of end-member composition is as follows: almandine 27.7 to 80.3%, pyrope 5.1 to 56.5%, spessartine 0.8 to 25.7%, grossular 1.6 to 20.2%, and andradite < 2%. Other heavy minerals (apatite, FeS2, REE and Y phosphates, galena, TiO2, sphalerite, and zircon) are present in insignificant quantities and their size is one order of magnitude smaller than the one of garnets. None of above-mentioned heavy minerals is affected by significant surface alteration. Quartz, ilmenite, apatite, TiO2, and zircon were recognized as inclusions in garnets. Quartz is most abundant in almandine-spessartine types, ilmenite in almandine-pyrope types. We consider faceted garnets to be polycyclic ones. Supporting evidence is: 1. presence of empty space around faceted garnets, sometimes partly filled by secondary minerals; 2. there are no differences between the chemical composition of inner parts and surface parts of garnets with crystal facets, rare inhomogenous parts do not correspond to crystal facets; 3. presence of organic acids and brines in a Carboniferous strata, which are known as important factors for garnet corrosion; 4. mineral association with authigenic quartz, illite, and dolomite-ankerite, together with stable apatite, indicate pH values ranging from 7.5 to 9. Such situation, burial depth of 2 to 3 km, and temperatures around 200 °C should not be favorable for authigenic garnet crystallization.

Files

Abstract (PDF) - 196.25KB
Fulltext (PDF) - 3.40MB

References

Buła Z., Habryn R., Jachowicz-Zdanowska M., Żaba J. (2015): The Precambrian and Lower Paleozoic of the Brunovistulicum (eastern part of the Upper Silesian Block, southern Poland) – the state of the art. Geol. Q. 59, 123-134.

Buła Z., Żaba J. (2005): Pozycja tektoniczna Górnośląskiego Zagłębia Węglowego na tle prekambryjskiego i dolnopaleozoicznego podłoża. In: Jureczka J., Buła Z., Żaba J. (eds.): LXXVI Zjazd Naukowy Polskiego Towarzystwa Geologicznego, 15–42. Państwowy Instytut geologiczny & Polskie towarzystwo geologiczne, Warszawa

Dopita M. (1959): Jednotný způsob označení uhelných slojí v ostravsko-karvinském revíru. MS, OKD.

Dopita M. (ed.) (1997a): Geologie české části hornoslezské pánve. - 1-280, Ministerstvo životního prostředí České republiky, Praha.

Dopita M., Martinec P., Tomis L., Hoch I., Merenda M. (1997b): Karvinské souvrství. In: Dopita M. (ed.): Geologie české části hornoslezské pánve, 87-113. Ministerstvo životního prostředí České republiky, Praha.

Fockenberg T., Burchard M., Maresch W. V. (2008): The solubility of natural grossular-rich garnet in pure water at high pressures and temperatures. Eur. J. Mineral. 20, 845-855.

Folprecht J., Patteisky K. (1928): Geologie ostravsko-karvinského kamenouhelného revíru. In: Kamenouhelné doly ostravsko-karvinského revíru, Svazek I. 25-340. Ředitelská konference ostravsko-karvinského kamenouhelného revíru, Moravská Ostrava.

Franců J., Otava J. (2014): Depositional, burial, thermal, and erosional history along and accross the Variscan front, Czech Republic. In: Bábek O., Grygar T.M, Uličný, D. (eds.): Abstract of Central European meeting of sedimentary geology conference, 22. Palacký University, Olomouc.

Geršlová E., Goldbach M., Geršl M., Skupien P. (2013): Heat flow evolution, subsidence and erosion in Upper Silesian Coal Basin, Czech Republic. Int. J. Coal Geol. 154-155, 30-42.

Grzebyk J., Leszczyński S. (2006) New data on heavy minerals from the Upper Cretaceous-Paleogene flysch of the Beskid Śląski Mts. (Polish Carpathians). Geol. Q. 50, 265-280.

Hansley P. L., Briggs P. H. (1994): Garnet dissolution in oxalic acid – A possible analog for natural etching of garnet by dissolved organic matter. 1-14, U.S. Geological Survey Bulletin 2106, Washington.

Hartley A. J., Otava J. (2001): Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. J. Geol. Soc. London 158, 137-150.

Havlena V. (1964): Geologie uhelných ložisek 2. 1-440, Nakladatelství Československé akademie věd, Praha.

Jirásek J., Sedláčková L., Sivek M., Martínek K., Jureczka J.: Castle Conglomerate Unit of the Upper Silesian Basin (Czech Republic and Poland): A record of the onset of late Mississippian C2 glaciation? Bull. Geosci. 88, 893-914.

Jurková A. (1984): Bystřice: Závěrečná zpráva. MS, Geologický průzkum, n. p., Ostrava.

Kędzior S. (2009): Accumulation of coal-bed methane in the south-west pert of the Upper Silesian Coal Basin (southern Poland). Int. J. Coal Geol. 80, 20-34.

Kędzior S. (2011): The occurence of a secondary zone of coal-bed methane in the southern part of the Upper Silesian Coal Basin (southern Poland): Potential for methane exploitation. Int. J. Coal Geol. 86, 157-168.

Kędzior S., Kotarba M. J., Pękała Z. (2013): Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennylvanian) strata in the south-east part of the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 105, 24-35.

Kotas A. (1995): Lithostratigraphy and sedimentologic-paleogeographic development – Upper Silesian Coal Basin. Prace Pan. Inst. geol. 148, 124-134.

Krippner A., Meinhold G., Morton A. C., von Eynatten H. (2014): Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks. Sediment. Geol. 306, 36-52.

Kroner U., Mansy J.-L., Mazur S., Aleksandrowski P., Hann H. P., Huckriede H., Lacquement F., Lamarche J., Ledru P., Pharaoh T. C., Zedler H., Zeh A, Zulauf G. (2014): Variscan tectonics. In: McCann T. (ed.): The geology of Central Europe, Volume 1: Precambrian and Palaeozoic, 599-664. The Geological Society, London.

Kukal Z. (1985): Návod k pojmenování a klasifikaci sedimentů. – 1-80, Ústřední ústav geologický, Praha.

Kumpera O., Martinec P. (1995): The development of the Carboniferous accretionary wedge in the Moravian-Silesian Paleozoic Basin. J. Czech Geol. Soc. 40, 47-64.

Locock A. J. (2008): An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput. Geosci. 34, 1769-1780.

Matýsek D., Jirásek J., Osovský M., Skupien P. (2014): Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineral. Mag. 78, 1265-1286.

Menning M., Alekseev A. S., Chuvashov B. I., Davydov V. I., Devuyst F.-X., Forek H. C., Grunt T. A., Hance L., Heckel P. H., Izokh N. G., Jin Y.-G., Jones P. J., Kotlyar G. V., Kozur H. W., Nemyrovska T. I., Schneider J. W., Wang X.-D., Weddige K., Weyer D., Work D. M. (2006): Global time scale and regional stratigraphic reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003). Palaeogeogr. Palaeocl. 240, 318-372.

Morton A. C. (1984): Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Miner. 19, 287-308.

Morton A. C., Borg G., Hansley P. L., Haughton P. D. W., Krinsley D. H., Trusty P. (1989): The origin of faceted garnets in sandstones: dissolution or overgrowth? Sedimentology 36, 927-942.

Morton A. C., Hallsworth C. R. (1999): Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 124, 3-29.

Morton A. C., Hallsworth C. R. (2007): Stability of detrital heavy minerals during burial diagenesis. In: Mange M.A., Wright D.T. (eds.): Developments in sedimentology, Volume 58: Heavy minerals in use, 215-245. Elsevier, Amsterdam.

Muszyński M., Gawel A., Skowroński A. (2007): Fasetowane ziarna granatów z pstrego piaskowca monokliny przedsudeckiej okolicy Głogowa (SW Polska). Geologia 33, 51-68.

Newton R. C., Manning C. E. (2007): Solubility of grossular, Ca3Al2Si3O12, in H2O–NaCl solutions at 800 ºC and 10 kbar, and the stability of garnet in the system CaSiO3–Al2O3–H2O–NaCl. Geochim. Cosmochim. Acta 71, 5191-5202.

Otava J. (2000) Sediment dispersal in the Moravian-Silesian Culm based on garnet geochemistry and mica dating. Geolines 10, 60.

Potonié H. (1896): Die floristische Gliederung des deutschen Carbon und Perm. Abh. Kön. Preuss. geol. Landesanst, neue F. 21, 1-58.

Rahmani R. A. (1973): Grain surface etching features of some heavy minerals. J. Sediment. Petrol. 43, 882-888.

Salata D. (2013): Garnet provenance in mixed first-cycle and poly-cycle heavy-mineral assemblages of the Ropianka and Menilite formations (Skole Nappe, Polish Flysch Carpathians): constraints from chemical composition and grain morphology. Ann. Soc. Geol. Pol. 83, 161-177.

Salvino J. F., Velbel M. A. (1989): Faceted garnets from sandstones of the Munising Formation (Cambrian), northern Michigan: petrographic evidence for their origin by intrastratal disolution. Sedimentology 36, 371-379.

Skoček V., Čadek J. (1960): Výskyt autigenního almandinu v karbonských sedimentech Ostravsko-karvínské pánve. Věst. Ústř. Úst. geol. 35, 31-38.

Starý J., Sitenský I., Mašek D., Hodková T., Vaněček M., Novák J., Horáková A., Kavina P. (eds.) (2015): Surovinové zdroje České republiky: Nerostné suroviny 2015. 1-402, Česká geologická služba, Praha.

Unrug R. (1966): L'évolution sédimentaire et tectonique du bassin hercynien de Moravie – Haute-Silésie. B. Soc. Geol. Fr. 7, 537547.

Velbel M. A. (1984): Natural weathering mechanisms of almandine garnet. Geology 12, 631-634.

Žežulka M. (1989): Nové ložisko českých granátů v Podkrkonoší. Geol. Průzk. 31, 74-77.