Supergene minerals from quartz vein with Mo-W mineralization near Ochtiná, Spišsko-gemerské rudohorie Mts. (Slovak Republic)
Keywords
Abstract
An interesting association of supergene minerals, represented by ferrimolybdite, hydrotungstite, jarosite, sulphur and tungstite has been recently identified at the outcrop of quartz vein with Mo-W mineralization (Mg-rich ferberite to huanzalaite, molybdenite and pyrite are dominant primary ore minerals) near the Ochtiná village, Spišsko-gemerské rudohorie Mts., Slovak Republic. Ferrimolybdite is a dominant supergene mineral and it forms pale to bright yellow crystalline coatings covering areas up to 400 cm2 or radial and fibrous aggregates with silky lustre in fissures and cavities of quartz with rich impregnations of molybdenite. Coatings and aggregates of ferrimolybdite consist of individual acicular crystals up to 6 mm in size. It occurs predominantly separately, only infrequently it is directly associated together with sulphur, hydrotungstite and tungstite. It was identified by PXRD and its refined unit-cell parameters (for the orthorhombic space group Pmmm) are: a 6.670(3) Å, b 15.409(7) Å, c 28.924(7) Å and V 3075.6(2) Å3. All studied samples of ferrimolybdite tend to be rather unstable in interaction with the electron beam, so complete quantitative chemical data of ferrimolybdite were not obtained, but except of dominant contents of Fe and Mo, also minor amounts of Ca (up to 0.4 wt.% CaO) and W (up to 1.2 wt. % WO3) were detected. Hydrotungstite is common supergene phase and its occurrence is always closely constrained to accumulations of weathered ferberite. It mostly forms greenish-yellow to bright yellow fine-crystalline pseudomorphs after aggregates and crystals of ferberite or coatings on altered ferberite, in both cases very often associated with tungstite. Rare are well developed tabular crystals of hydrotungstite up to 4 mm in size growing on altered ferberite in drusy cavities of quartz. The unit-cell parameters of hydrotungstite refined from the powder X-ray diffraction data (for the monoclinic space group P2/m) are: a 7.392(5) Å, b 6.898(4) Å, c 3.765(4) Å, β 90.4(3)° with V 191.9(3) Å3. Chemical composition of hydrotungstite from Ochtiná is close to ideal empirical formula WO2(OH)2·H2O, only infrequent minor contents of Fe and Ca (both up to 0.01 apfu) were detected. Jarosite occurs as soft, yellowish-orange to yellowish-brown, fine-crystalline to powdery aggregates and fillings of drusy cavities and caverns after weathered pyrite up to several cm in size. Aggregates of jarosite consists of individual trigonal tabular crystals up to 15 µm in size. It occurs separately, predominantly in the parts of the vein which are rich in pyrite. Its unit-cell parameters refined from the powder X-ray data (for trigonal space group R-3m) are: a 7.296(3) Å, c 17.2202(3) Å and V 793.8(4) Å3. Jarosite from Ochtiná contain uncommon concentrations of Mo and W (both up to 0.08 apfu), with average (n=10) empirical formula corresponding to [K0.82Na0.04(H3O)0.14]Σ1.00(Fe2.89Al0.01)Σ2.90[(SO4)1.89(MoO4)0.06(WO4)0.05]Σ2.00(OH)5.64Cl0.03 on the basis of (S+Mo+W) = 2 apfu. Sulphur is common mineral and it forms pale yellow brittle crystalline aggregates and fillings of cavities up to several cm in size, which consists of rounded, often skeletal crystals up to 3 mm in size. It was identified by PXRD and its refined unit-cell parameters (for the orthorhombic space group Fddd) are: a 10.472(4) Å, b 12.864(6) Å, c 24.498(10) Å and V 3300.1(3) Å3. Tungstite is common mineral, always closely associated with altered ferberite. It forms orange to brownish-yellow fine-crystalline coatings or pseudomorphs after ferberite, often associated together with hydrotungstite. Rare are crystalline crusts and aggregates of tungstite, which consists of well developed pyramidal crystals up to 40 µm in size. The unit-cell parameters of tungstite refined from the powder X-ray diffraction data (for the orthorhombic space group Pmnb) are: a 5.245(1) Å, b 10.727(2) Å, c 5.130(2) Å with V 288.6(1) Å3. Two types of tungstite can be distinguished according to chemical composition, first has average (n=5) empirical formula (W0.98Fe0.01Ca0.01)Σ1.00O3·H2O based on (W+Fe+Ca) = 1 apfu. The second type is Fe enriched and its average (n=8) empirical formula is (W0.74Fe0.24Ca0.02)Σ1.00O3·H2O based on (W+Fe+Ca) = 1 apfu. Described supergene mineral association is product of in-situ alteration of molybdenite and ferberite under the rather acidic conditions, which were induced by the weathering of abundant pyrite.
Files
References
Bezák V, Dublan L, Hraško Ľ, Konečný V, Kováčik M, Madarás J, Plašienka D, Pristaš J (1999) Geologická mapa Slovenského rudohoria 1:50 000. Geologická služba SR, Bratislava
Černý P, Černý P, Vrtiška L, Malíková R, Exnar P (2015) Jarosit a doprovodné minerály z opuštěného lomu Milina u Zaječova (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 23(2): 242-246
Ferenc Š, Uher P (2007) Magnesian wolframite from hydrothermal quartz veins in the Rochovce granite exocontact, Ochtiná, Western Carpathians, Slovakia. N Jb Mineral Abh 183: 165-172
Gargulák M (1992) Nový výskyt molybdenitového zrudnenia pri Ochtinej. MS, archív Geofond, Bratislava, 77797
Hansuld JA (1966) Behaviour of molybdenum in secondary dispersion media - A new look at an old geochemical puzzle. Min Eng 18: 73-77
Határ J, Hraško Ľ, Václav J (1989) Hidden granite intrusion near Rochovce with Mo(-W) stockwork mineralization (First object of its kind in the West Carpathians). Geol Zbor Geol Carpath 40: 621-654
Horal KA (1971) Pamäti. MS, archív Geofond, Bratislava, 85054
Horn E, Kurahashi M, Huang D, Wu C (1995) Crystal data and X-ray powder-diffraction data for ferrimolybdite, Fe2(MoO4)3·6.8H2O. Powder Diffr 10(2): 101-103
Hraško Ľ, Kotov AB, Salnikova EB, Kovach VP (1998) Enclaves in the Rochovce Granite intrusion as indicators of the temperature and origin of the magma. Geol Carpath 49: 125-138
Kaduk JA, Sentman JB (2008) Crystal structure of synthetic hydrotungstite, WO2(OH)2(H2O). Acta Cryst A64: C545
Klinec A, Macek J, Dávidová Š, Kamenický L (1980) Rochovský granit v styčnej zóne gemeríd s veporidmi. Geol Práce, Správy 74: 103-112
Kohút M, Stein H, Uher P, Zimmerman A, Hraško Ľ (2013) Re-Os and U-Th-Pb dating of the Rochovce granite and its mineralization (Western Carpathians, Slovakia). Geol Carpath 64: 71-79
Laugier J, Bochu B (2011) LMGP-Suite of Programs for the Interpretation of X-ray Experiments. http://www.ccp14.ac.uk/tutorial/lmgp
LeAnderson PJ, Schrader EL, Brake S, Kaback DS (1987) Behaviour of molybdenum during weathering of the Ceresco Ridge porphyry molybdenite deposit, Climax, Colorado an a comparison with the Hollister deposit, North Carolina. Appl Geochem 2: 399-415
Lörincz L, Švantnerová E, Bachňák M (1993) Záverečná správa: Ochtiná-Rochovce Mo, W, vyhľadávací prieskum, stav k 30.9.1993. MS, archív Geofond, Bratislava, 79365
Pauliš P, Vrtiška L, Sejkora J, Malíková R. Hloušek J, Dvořák Z, Gramblička R, Pour O, Ludvík J (2015) Supergenní mineralizace skarnového cínového ložiska Zlatý Kopec v Krušných horách (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 23(2): 182-200
Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106
Poller E, Uher P, Janák M, Plašienka D, Kohút M (2001) Late Crataceous age of the Rochovce granite, Western Carpathians, Constrained by U-Pb single-zircon dating in combination with cathodo-luminiscence imaging. Geol Carpath 52: 41-47
Rettig SJ, Trotter J (1987) Refinement of the Structure of Orthorombic Sulphur, α-S8. Acta Cryst C43: 2260-2262
Roberts AC (1981) The X-ray crystallography of tungstite. Geol Surv Can, 81-1C, 82
Sahama ThG, Lehtinen M (1971) Refinement of the X-ray data for hydrotungstite from Calacalani, Bolivia. Bull Geol Soc Finland 43: 89-91
Sato E, Nakai I, Miyawaki R, Matsubara S (2009) Crystal structures of alunite family minerals: beaverite, corkite, alunite, natroalunite, jarosite, svanbergite and woodhouseite. N Jb Mineral Abh 185: 313-322
Sejkora J, Čejka J, Malíková R, López A, Xi Y, Frost RL (2014) A Raman spectroscopic study of a hydrated molybdate mineral ferrimolybdite, Fe2(MoO4)3·7–8H2O. Spectrochim Acta A Molecul Biomolec Spectrosc 130: 83-89
Sejkora J, Kotrlý M, Novotná M, Skála R (1998) Ferrimolybdit z opuštené štoly 5. květen u Vrchoslavi, Krušné hory. Bull mineral-petrolog Odd Nár Muz (Praha) 6: 225-228
Slavkay M, Beňka J, Bezák V, Gargulák M, Hraško Ľ, Kováčik M, Petro M, Vozárová A, Hruškovič S, Knésl J, Knéslová A, Kusein M, Maťová V, Tulis J (2004) Ložiská nerastných surovín Slovenského Rudohoria - zväzok 2. Štátny geologický ústav Dionýza Štúra, Bratislava, 1-286
Sluka P (1954) Záverečná správa a výpočet zásob na ložisku Ochtiná-Cižkobaňa so stavom ku dňu 1.1.1954. MS, archív Geofond, Bratislava, 8115
Szymański JT, Roberts AC (1984) The crystal structure of tungstite, WO3·H2O. Canad Mineral 22: 681-688
Števko M, Bačík P, Bálintová T (2009) Supergénna síra z antimonitového ložiska Chyžné-Herichová, Slovenská republika. Bull mineral-petrolog Odd Nár Muz (Praha) 17(2): 35-38
Vozárová A, Vozár J (1988) Late Paleozoic in the Western Carpathians. Štátny geologický ústav Dionýza Štúra, Bratislava, 1-314
Williams PA (1990) Oxide zone geochemistry. Ellis Horwood, Chichester, 1-286
Žáček V, Škoda R, Laufek F (2008) Molybdenem bohatý jarosit z oxidační zóny středověkého Au-Ag ložiska v Hůrkách u Rakovníka (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 16(2): 190-192