Ni-Sb mineralization from the Michalovy Hory ore district (Czech Republic)
Keywords
Abstract
An interesting hydrothermal Ni-Sb mineralization has been found in the dumps of the Jan Křtitel Gallery near Michalovy Hory, western Bohemia, Czech Republic. Breithauptite forms metallic fine-crystalline aggregates up to several cm in size with pinkish or reddish tint. It is hexagonal, space group P63/mmc and its refined unit-cell parameters are: a 3.9251(2), c 5.1364(2) Å and V 68.531(7) Å3. The chemical composition of breithauptite is close to ideal formula, only minor amounts of Bi (up to 0.02 apfu) and As (up to 0.12 apfu) were detected. Its empirical formula (mean of 45 point analyses) is Ni0.97(Sb0.97As0.09)Σ1.04. The most abundant arsenide in the studied association is nickeline, It occurs as metallic fine-crystalline aggregates up to several cm in size. Occasionally, nickeline aggregates weighing up to 1.5 kg were found. It shows chemical composition with Sb contents in the range 0.02 - 0.28 apfu. Rarely also microscopic aggregates of unusual Sb-rich nickeline (0.30 - 0.46 apfu) were observed together with breithauptite and rammelsbergite. Gersdorffite was found as microscopic aggregates in association with older rammelsbergite. Beside dominant Ni (0.47 - 0.68 apfu) it contains also Co (0.26 - 0.38 apfu) and Fe (0.07 - 0.17 apfu). Nickelskutterudite forms metallic light grey grains up to several cm in size, together with younger stephanite. Its chemical composition corresponds to the empirical formula (Ni0.69Fe0.27Co0.03Cu0.02)Σ1.01 (As2.93S0.06Sb0.01)Σ3.00. Rammelsbergite appears in four associations: as rims of breithauptite or nickeline, as aggregates with relics of native bismuth or aggregates with rims of younger gersdorffite. Chemical composition of individual types of rammelsbergite varies especially in Ni/Co and As/Sb/S ratios. Millerite was found as metallic golden crystalline aggregates in fissures of breithauptite or rarely also as acicular crystals up to 2 mm in lenght. Its chemical composition can be expressed by the empirical formula Ni1.00(S0.99Sb0.01)Σ1.00. Violarite was observed as fillings of cavities up to 500 μm in size in breithauptite aggregates, its empirical formula is Fe0.96Ni2.03(S3.98Sb0.02As0.01)Σ4.01. Younger sulphidic mineralization is represented by aggregates of tetrahedrite (empirical formula (Cu9.78Ag0.22)Σ10.00(Fe1.31Zn0.51Co0.04)Σ1.86 (Sb3.92As0.52)Σ4.44S12.70) and microscopis aggregates of galena (Pb0.95Cu0.08)Σ1.03S0.98 and stephanite (Ag5.04Cd0.01)Σ5.05(Sb0.90As0.13)Σ1.03S3.93. The crystallization sequence of studied mineral phases is following: breithauptite, nickeline, bismuth → Sb-rich nickeline → rammelsbergite → gersdorffite→ nickelskutterudite → millerite, violarite, tetrahedrite → stephanite, galena.
Files
References
Alsen N. (1925) Röntgenographische Untersuchung der Kristallstrukturen von Magnetkies, Breithauptit, Pentlandit, Millerit und verwandten Verbindungen. Geologiska Föreningens i Stockholm Förhandlingar, 47, 19-72.
Andrle A. (1997) Michalovy Hory. Speleo 24, 57-58.
Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C. (1990) Handbook of mineralogy. Volume I. Elements, sulfides, sulosalts. Mineral data publishing, Tucson, Arizona, 588 s.
Burnham Ch. W. (1962) Lattice constant refinement. Carnegie Inst. Washington Year Book 61, 132-135.
Craig J. R. (1971) Violarite stability relations. Am. Mineral. 56, 1303-1311.
Fiala V., Mrázek P. (1977) Das Mineralvorkommen von Michalové Hory bei Mariánské Lázně. Folia Mus. Rer. natur. Bohem. occident., Geol. 10, 3-17.
Gramblička R. (2015) Objev bohatého Pb-Zn-Cu zrudnění v Chodové Plané. Minerál 23, 1, 60-64.
Gritsenko Y. D., Spiridonov E. M. (2005) Minerals of the nickeline-breithauptite series from metamorphogenic-hydrotermal veins of the Norilsk ore field. New data on minerals 40, 51-65.
Hewitt D. F. (1948) A partial study of the NiAs-NiSb system. Econ. Geol. 43, 5, 408-417.
Kratochvíl J. (1958) Topografická mineralogie Čech II. NČSAV Praha.
Ondruš P. (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enchede.
Ondruš P., Veselovský F., Gabašová A., Hloušek J., Šrein V., Vavřín I., Skála R., Sejkora J., Drábek M. (2003) Primary minerals of the Jáchymov ore district. J. Czech Geol. Soc. 48, 3-4, 19-147.
Parviainen A., Gervilla F., Melgarejo J. C., Johanson B. (2008) Low-temperature, platinum-groups-bearing Ni arsenide assemblage from the Atrevida mine (Catalonian Coastal Ranges, NE Spain). N. Jb. Mineral. Abh. 181, 1, 33-49.
Pauliš P. (1990) Tennantit z Měděnce a Michalových Hor. Věst. Ústř. Úst. geol. 65, 5, 353-357.
Pauliš P. (1993) Köttigit z Michalových Hor (v. od Chodové Plané). J. Czech Geol. Soc. 38, 3-4, 218.
Pauliš P. (2011) Nový přehled minerálů České republiky a jejich lokalit, 1. a 2. díl. Kuttna, Kutná Hora, 232 s.
Pauliš P., Jebavá I., Vlk J. (2012) Linarit z Dolního Kramolína (rudní revír Michalovy Hory, Česká republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 1, 83-86.
Petruk W., Harris D. C., Stewart J. M. (1971) Characteristics of the arsenides, sulpharsenides, and antimonides. Can. Mineral. 11, 150-186.
Pouchou J. L., Pichoir F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.
Števko M., Sejkora J., Litochleb J., Macek I., Bačík P. (2013) Krutovit a sprievodné minerály z lokality Dobšiná-Teliatko (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 21, 1, 1-14.
Wyckoff R. W. G. (1963) Crystal Structures 1. Second edition. Interscience Publishers, New York, New York, 85-237.
Yvon K., Jeitschko W., Parthé E. (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J. Appl. Cryst. 10, 73-74.