Lindgrenite, monoclinic Cu3(MoO4)(OH)2, from Cínovec, Krušné hory Mountains - the first occurrence in the Czech Republic
Keywords
Abstract
A very rare mineral lindgrenite, Cu3(MoO4)2(OH)2, was found in material from the 3rd level of abandoned Cínovec mine 1 of the Cínovec Sn-W deposit, Krušné hory Mountains, northern Bohemia. This is the first occurrence of this mineral in the Czech Republic. Lindgrenite occurs there as olive green irregular coatings on the area up to 0.5 × 1 cm in size formed by hemispherical to spherical aggregates up to 0.3 mm across with crystalline surface in association with brochantite. Lindgrenite is monoclinic, space group P21/n, the unit-cell parameters refined from X-ray powder diffraction data are: a 5.3934(18), b 14.032(2), c 5.6098(15) Å, β 98.54(2)° and V 419.86(16) Å3. Chemical analyses of lindgrenite correspond to the empirical formula (Cu2.92Fe0.03)Σ2.95(MoO4)1.97(PO4)0.07(AsO4)0.01(OH)1.70 on the basis of 5 atoms pfu. Its origin is connected with simultaneous weathering of primary Cu (tennantite) and Mo (molybdenite) minerals in the conditions of supergene zone in-situ.
Online 15.7.2023
Files
References
Bao RL, Kong ZP, Min GU, Bin YUE, Weng LH, He HY (2006) Hydrothermal synthesis and thermal stability of natural mineral lindgrenite. Chemical Research in Chinese Universities, 22(6): 679-683. https://doi.org/10.1016/s1005-9040(06)60189-x
Barnes WH (1949a) Corrections to recent papers on probertite and lindgrenite. Am Mineral 34(7-8): 611-613
Barnes WH (1949b) The unit cell and space group of lindgrenite. Am Mineral 34(3-4): 163-172
Burnham Ch W (1962) Lattice constant refinement. Carnegie Inst Washington Year Book 61: 132-135
Frost R, Duong L, Weier M (2004) Raman microscopy of the molybdate minerals koechlinite, iriginite and lindgrenite. N Jb Mineral, Abh 180(3): 245-260. https://doi.org/10.1127/0077-7757/2004/0180-0245
Hawthorne FC, Eby RK (1985) Refinement of the crystal structure of lindgrenite. N Jb Mineral, Mh 1985(5): 234-240
Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H´´´O hydrogen bond lengths in minerals. Monat Chem 130: 1047-1059. https://doi.org/10.1007/bf03354882
Lutz HD (1995) Hydroxide ions in condensed materials - correlation of spectroscopic and structural data. In: Alcock NW, ed. Structure and bonding Vol. 82 Coordination chemistry p. 86-103, Springer Verlag, Berlin Heidelberg. https://doi.org/10.1007/bfb0036826
Martins GM, Coelho PO, Moreira RL, Dias A (2018) Hydrothermal synthesis and polarized micro-Raman spectroscopy of copper molybdates. Ceramics Internat 44(11): 12426-12434. https://doi.org/10.1016/j.ceramint.2018.04.032
Miyazaki I, Ohori S, Kishi S, Kobayashi S, Kusachi I (2002) Lindgrenite from the Sansei mine, Nara Prefecture, Japan. J Mineral Petrolog Sci 97(4): 207-210. https://doi.org/10.2465/jmps.97.207
Moini A, Peascoe R, Rudolf PR, Clearfield A (1986) Hydrothermal synthesis of copper molybdates. Inorg Chem 25(21): 3782-3785. https://doi.org/10.1021/ic00241a016
Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds Part A Theory and applications in inorganic chemistry. John Wiley and Sons Inc. Hoboken, New Jersey. https://doi.org/10.1002/9780470405840
Ondruš P (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Scien- ce Forum, 133-136, 297-300, EPDIC-2. Enchede. https://doi.org/10.4028/www.scientific.net/msf.133-136.297
Palache C (1935) Lindgrenite, a new mineral. Am Mineral 20(7): 484-491
Pauliš P, Dvořák Z, Babka K, Fuchs P (2022) Nerostné bohatství Krupky, Cínovce a Moldavy. Kuttna, Kutná Hora.
Pouchou J, Pichoir F (1985) „PAP“ (jrz) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press. San Francisco
Saraf U, Bajpai PK, Chowdhury RNP (2010) Vibrational Raman and FTIR studies of some double alkali molybdates/tungstates. J Int Acad Phys Sci 14(1): 81-90
Sejkora J, Čejka J, Malíková R, López A, Xi Y, Frost RL (2014) A Raman spectroscopic study of a hydrated molybdate mineral ferrimolybdite, Fe2(MoO4)3·7-8 H2O. Spectrochim Acta A: Molec Biomolec Spectrosc 130: 83-89. https://doi.org/10.1016/j.saa.2014.03.112
Shahri Z, Salavati-Niasari M, Mir N, Kianpour G (2014) Facile synthesis and characterization of nanostructured flower-like copper molybdate by the co-precipitation method. J Cryst Growth 386: 80-87. https://doi.org/10.1016/j.jcrysgro.2013.09.031
Shores MP, Bartlett BM, Nocera DG (2005) Spin-frustrated organic-inorganic hybrids of lindgrenite. J Am Chem Soc 127(51): 17986-17987. https://doi.org/10.1021/ja056666g
Swain B, Lee DH, Park JR, Lee CG, Lee KJ, Kim DW, Park KS (2017) Synthesis of Cu3(MoO4)2(OH)2 nanostructures by simple aqueous precipitation: understanding the fundamental chemistry and growth mechanism. Cryst Eng Comm 19(1): 154-165. https://doi.org/10.1039/c6ce02344d
Vilminot S, André G, Richard-Plouet M, Bourée-Vigneron F, Kurmoo M (2006) Magnetic structure and magnetic properties of synthetic lindgrenite, Cu3(OH)2(MoO4)2. Inorg Chem 45(26): 10938-10946. https://doi.org/10.1021/ic061182m
Xu J, Xue D (2007) Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture. J Solid State Chem 180(1): 119-126. https://doi.org/10.1016/j.jssc.2006.09.030
Yvon K, Jeitschko W, Parthé E (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J Appl Cryst 10: 73-74. https://doi.org/10.1107/s0021889877012898