Pyrometamorphosed sandstone xenolith and associated hydrothermal mineralization from neovolcanites at Prackovice nad Labem (České středohoří Mts., Czech Republic)
Keywords
Abstract
Technical workings realized near Prackovice nad Labem (České středohoří Mts., Czech Republic) yielded new findings about rocks and mineral veins present in Cenozoic volcanites. The studied xenolith represents a piece of pyrometamorphosed and hydrothermally altered sandstone enclosed in an alkaline basic volcanic rock. The core of the xenolith contains relicts of clasts of quartz, embedded in a matrix composed of laths of quartz (probably pseudomorphs of quartz after tridymite) and symplectitic intergrowths of alkali feldspar (sanidine Or57-81Ab19-41An0-1) and quartz. This core is rimmed by drusy overgrowths of sanidine and crystals of fluorapatite, aegirine-augite and titanite. All silicates are characterized by a significant substitution of Al by Fe3+, which is probably the result of high content of Fe3+ in the sandstone protolith (perhaps in limonite cement). The marginal part of xenolith is formed by zeolites (chabazite-K and phillipsite-K), saponite and calcite. These minerals likely crystallized at very low temperatures (<100 °C) in a vug, leaving after volatiles, which were expelled during pyrometamorphism of the xenolith. In addition, we have studied tiny hydrothermal veinlets hosted by neovolcanites, composed of a mixture of Al-rich phyllosilicates (probably a mineral from the kaolinite group and smectite) and strongly substituted carbonates including siderite (Sid55-91Mag3-38Cal5-31Rdc1) and calcite (Cal58-90 Mag8-41Sid1-6).
Files
References
Cajz V (ed) (1996) České středohoří. ČGS, Praha. 1-160
Coombs DS, Alberti A, Armbruster G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH, Passaglia E, Peacor D, Quartieri S, Rinaldi R, Ross M, Sheppard RA, Tillmanns E, Vezzalini G (1997) Recommended nomenclature for zeolite minerals: Report of the Subcommittee on zeolites of the International Mineralogical Association, Commission on new minerals and mineral names. Can Mineral 35: 1571-1606 https://doi.org/10.1180/002646198547800
Čáp P (2013) Poznámky ke xenolitům křídových sedimentů v neogenních vulkanitech z okolí Rovenska pod Troskami (Geopark Český ráj). Zpr geol výzk v r 2013: 7-11
Dolníček Z, Kropáč K, Uher P, Polách M (2010) Mineralogical and geochemical evidence for multi-stage origin of mineral veins hosted by teschenites at Tichá, Outer Western Carpathians, Czech Republic. Chem Erde Geochem 70(3): 267-282 https://doi.org/10.1016/j.chemer.2010.03.003
Fediuk F (1981) Minerály hornin kausticky metamorfovaných vulkanity a zemními požáry. In: Bernard JH, Čech F, Dávidová Š, Dudek A, Fediuk F, Hovorka D, Kettner R, Koděra M, Kopecký L, Němec D, Paděra K, Petránek J, Sekanina J, Staněk J, Šímová M: Mineralogie Československa: 524-525. Academia Praha
Fenner CN (1912) The various forms of silica and their mutual relations. J Washingt Acad Sci 2(20): 471-480
Kopecký L, Dobeš M, Fiala J, Šťovíčková N (1970) Fenites of the Bohemian Massif and the relations between fenitization, alkaline volcanism and deep fault tectonics. Sbor geol věd, Geol 16: 51-112
Kristmanndóttir H, Tómasson J (1978) Zeolite zones in geothermal areas in Iceland. In: Sand LB, Mumpton FA (eds.) Natural zeolites: Occurrence, properties, use: 277-284. Pergamon Press, Elmsfold, New York
Melka K, Šťastný M (2014) Encyklopedický přehled jílových a příbuzných minerálů. Academia Praha, 1-914
Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 50: 535-550 https://doi.org/10.1180/minmag.1988.052.367.15
Passaglia E (1970) The crystal chemistry of chabazites. Am Mineral 55: 1278-1301
Pauliš P, Dolníček Z, Vrtiška L, Malíková R, Pour O, Fediuk F (2021) Hydroxyapofylit-(K) z kamenolomu Těchlovice u Děčína (Česká republika). Bull Mineral Petrolog 29(1): 124-130 https://doi.org/10.46861/bmp.29.124
Pouchou J, Pichoir F (1985) „PAP“ (jrZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press. San Francisco
Reeder RJ, Dollase WA (1989) Structural variation in the dolomite-ankerite solid-solution series: An X-ray, Mössbauer, and TEM study. Am Mineral 74: 1159-1167
Rockett TJ, Foster WR (1967) The thermal stability of purified tridymite. Am Mineral 52: 1233-1240
Stormer JC Jr, Pierson MJ, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis. Am Mineral 78: 641-648
Trdlička Z, Hoffman V (1975) Untersuchungen der chemischen Zusammensetzung der Gangkarbonate von Kutná Hora (ČSSR). Freiberg Forschungshefte 6: 29-81
Ulrych J, Cajz V, Balogh K, Erban V (2001) Geochemistry of the stratified volcanosedimentary complex in the central part of the České středohoří Mts., North Bohemia. Krystalinikum 27: 27-49
Ulrych J, Pivec E, Lang M, Balogh K, Kropáček V (1999) Cenozoic intraplate volcanic rock series of the Bohemian massif: a review. Geolines 9: 123-129
Wang A, Freeman JJ, Jolliff BL (2015) Understanding the Raman spectral features of phyllosilicates. J Raman Spectrosc 46(10): 829-845 https://doi.org/10.1002/jrs.4680
Žáček V, Rapprich V, Škoda R, Laufek F (2010) Porcelanit s relikty mikrofosílií z lemu miocenní bazanitové žíly u Mladějova v Českém ráji. Bull Mineral-petrolog odd Nár Muz (Praha) 18(2): 79-86