Let's not underestimate the microbial precipitation of iron and manganese oxyhydroxides in the environment
Keywords
Abstract
Dolníček (2020) described several occurrences of bog iron (limonite), which according to his article originates in recent streams by chemical precipitation, without the important role of microorganisms on this process. However, similar occurrences of reddish or orange slime, frequently accompanied by oil-like films floating on the water, are according to many papers ascribed to the biogenic iron oxidation by bacteria. To solve the origin of such precipitates, we have sampled similar materials in four places near Ostrava - Hrabová, two close to Řepiště and Staříč, and also two sites in the vicinity of Hulín investigated by Dolníček (2020). In all cases, scanning electron microscopy of dried samples at the low vacuum (ca 50 Pa) revealed a dominant share of tubular sheaths of the Leptothrix-Sphaerotilus group of bacteria. The prevailing diameter of 1.5 to 1 μm should point to genus Leptothrix, while those with a diameter up to 2.5 μm (genus Sphaerotilus) are far less common. Spiral chains of Gallionella were recognized in all samples, as well as rare pennate diatoms. Space between bacterial filaments is predominantly filled with densely stacked particles micrometer to submicrometer in size, sometimes with oval, fibrous, or tabular shape. It might be both decomposed material of previously mentioned genera and some other small-sized bacteria. Energy-dispersive spectroscopy shows dominant content of iron and oxygen, with a minor admixture of Si, Ca, Al, and P. Powder X-ray diffraction of such microbial mats is showing clastic admixtures (quartz, feldspar group minerals, illite-muscovite, and kaolinite) and two broad low-intensity peaks of ferrihydrite. Only sample D from Řepiště locality shows an absence of ferrihydrite and the presence of hematite and magnetite and/or maghemite. Therefore, we demonstrated that bacterially-induced precipitation plays a major role in the genesis of such recent bog iron occurrences and there are ways how to characterize such material by both biological and mineralogical procedures.
Files
References
Anderson CT, Pedersen K (2003) In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology 1(2): 169-178. https://doi.org/10.1046/j.1472-4669.2003.00013.x
Angelova R, Groudeva V, Slavov L, Iliev M, Nedkov I, Sziklai-László I, Krezhov K (2015) Investigation of iron-containing products from natural and laboratory cultivated Sphaerotilus-Leptothrix bacteria. J Biol Phys 41(4): 367-375. https://doi.org/10.1007/s10867-015-9384-1
Cornell RM, Giovanoli R, Schindler PW (1987) Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clay Clay Miner 35(1): 21-28. https://doi.org/10.1346/ccmn.1987.0350103
Dolníček Z (2020) Recentní vznik limonitové bahenní železné rudy v Hulíně (niva řeky Moravy). Bull Mineral Petrolog 28(2): 412-416. https://doi.org/10.46861/bmp.28.412
Dove PM, De Yoreo JJ, Weiner S eds (2003) Biomineralization. Rev Mineral Geochem 54: 1-381
Dupraz C, Reid PR, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96(3), 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005
Ellis D (1919) Iron bacteria. 1-179, Methuen and Co., Ltd. London
Ebrahiminezhad A, Manafi Z, Berenjian A, Kianpour S, Ghasemi Y (2017) Iron-reducing bacteria and iron nanostructures. J Adv Med Sci Appl Tech 3(1): 9-16. https://doi.org/10.18869/nrip.jamsat.3.1.9
Emerson D, Revsbech NP (1994a): Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl Environmen Microb 60(11): 4022-4031. https://doi.org/10.1128/aem.60.11.4022-4031.1994
Emerson D, Revsbech NP (1994b) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl Environmen Microb 60(11): 4032-4038. https://doi.org/10.1128/aem.60.11.4032-4038.1994
Gálvez N, Barrón V, Torrent J (1999) Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite. Clay Clay Miner 47(3): 304-311. https://doi.org/10.1346/ccmn.1999.0470306
Hanert HH (2006) The Genus Gallionella. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) The Prokaryotes: A handbook on the biology of bacteria, 3rd edition, Vol 7: Proteobacteria: Delta and Epsilon Subclasses, Deeply rooting bacteria. 990-995, Springer, Singapore. https://doi.org/10.1007/0-387-30746-x
Hashimoto H,Yokoyama S, Asaoka H, Kusano Y, Ikeda Y, Seno M, Takada J, Fujii T, Akanishi M, Murakami R (2007) Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. J Magn Magn Mater 310(2): 2405-2407. https://doi.org/10.1016/j.jmmm.2006.10.793
Hedrich S, Schlomann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157(6): 1551-1564. https://doi.org/10.1099/mic.0.045344-0
Heim C (2011) Microbial biomineralization. In Reitner J, Thiel V (eds.) Encyclopedia of Geobiology: 586-592. Springer, Dordrecht
Heim C, Simon K, Ionescu D, Reimer A, DeBeer D, Quéric N-V, Reitner J, Thiel V (2015) Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides. Front Earth Sci 3: 1-15. https://doi.org/10.3389/feart.2015.00006
Chan CS, McAllister SM, Leavitt AH, Glazer BT, Krepski ST, Emerson D (2016) The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front Microbiol 7: 1-18. https://doi.org/10.3389/fmicb.2016.00796
Jansen E, Kyek A, Schäfer W, Schwertmann U (2002) The structure of six-line ferrihydrite. Appl Phys A-Mater 74: s1004-s1006. https://doi.org/10.1007/s003390101175
Kinsela AS, Jones AM, Bligh MW, Pham AN, Collins RN, Harrison JJ, Wilsher KL, Payne TE, Waite TD (2016) Influence of dissolved silicate on rates of Fe(II) oxidation. Environ Sci Technol 50: 11663-11671. https://doi.org/10.1021/acs.est.6b03015
Klein C (2006) Manual of mineral science, 22nd ed. 1-644, Willey a Sons, New York
Konhauser KO (1997) Bacterial iron biomineralisation in nature. FEMS Microbiol Rev 20(3-4): 315-326. https://doi.org/10.1111/j.1574-6976.1997.tb00317.x
Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7: 89-93. https://doi.org/10.2113/gselements.7.2.89
Konhauser K (2015) Základy geomikrobiológie. 1-317, Univerzita Komenského v Bratislavě, Bratislava
Lee SH, Lee I, Roh Y (2003) Biomineralization of a poorly crystalline Fe(III) oxide, akaganeite, by an anaerobic Fe(III)-reducing bacterium (Shewanella alga) isolated from marine environment. Geosci J 7(3): 217-226. https://doi.org/10.1007/bf02910288
Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316(5832): 1726-1729. https://doi.org/10.1126/science.1142525
Mikutta Ch, Frommer J, Voegelin A, Kaegi R, Kretschmar R (2010) Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation. Geochim Cosmochim Acta 74(19): 5574-5592. https://doi.org/10.1016/j.gca.2010.06.024
Nedkov I, Slavov L, Angelova R, Blagoev B, Kovacheva D, Abrashev MV, Iliev M, Groudeva V (2016) Biogenic nanosized iron oxides obtained from cultivation of iron bacteria from the genus Leptothrix. J Biol Phys 42(4): 587-600. https://doi.org/10.1007/s10867-016-9426-3
Nickel EH, Grice JD (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. Mineral Petrol 64: 237-263. https://doi.org/10.1007/bf01226571
Pringsheim EG (1949) The filamentous bacteria Sphaerotilus, Leptothrix, Cladothrix, and their relation to iron and manganese. Philos T R Soc B 233(605): 453-482. https://doi.org/10.1098/rstb.1949.0002
Ratajczak T, Rzepa G (2011) Polskie rudy darniowe. 1-369, Wydawnictwa AGH, Kraków
Robbins N (2020) What’s the red in the water? What’s the black on the rocks? What’s the oil on the surface? How to collect and see the microbial community that fixes iron and manganese in the natural environment. U.S. Geological Survey, přístup 17. ledna 2021 na adrese https://pubs.usgs.gov/gip/microbes/
RRUFF Database (2020) Přístup 18. ledna 2021 na adrese https://rruff.info/ima
Schieber J, Glamoclija M (2007) 8(a): Microbial mats built by iron bacteria: a modern example from southern Indiana. In: Schieber J, Bose P, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds.) Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in geoscience, Vol 2. 233-245, Elsevier Science, Amsterdam
Skinner HCW (2005) Biominerals. Mineral Mag 69(5): 621-641
Skinner HCW, Ehrlich H (2014) 10.4 - Biomineralization. In: Karl MD, Schlesinger WH (eds.) Treatise on Geochemistry, 2nd edition, Vol 10. 105-162, Elsevier Science, Amsterdam
Spring S (2006) The Genera Leptothrix and Sphaerotilus. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) The Prokaryotes: A handbook on the biology of bacteria, 3rd edition, Vol 5: Proteobacteria: Alpha and Beta Subclasses: 758-777, Springer, Singapore. https://doi.org/10.1007/0-387-30745-1_35
Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13(9): 421-428. https://doi.org/10.1016/j.tim.2005.07.009
van Veen WL, Mulder EG, Deinema MH (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42(2): 329-356. https://doi.org/10.1128/mmbr.42.2.329-356.1978
Voegelin A, Kaegi R, Frommer J, Vantelon D, Hug SJ (2010) Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. Geochim Cosmochim Acta 74(1): 164-186. https://doi.org/10.1016/j.gca.2009.09.020