Complex magmatic to hydrothermal evolution of columbite, microlite and fersmite from beryl-columbite D6e pegmatite near Maršíkov, Czech Republic
Keywords
Abstract
The recently rediscovered small D6e granitic pegmatite body, enclosed in amphibole gneiss of the Sobotín amphibolite massif (Jeseníky Mountains, Czech Republic), is characterized by numerous accessory minerals, including common columbite group minerals (CGM) and minor microlite and fersmite related to blocky K-feldspar unit. The CGM show complex internal zoning. Primary magmatic columbite-(Mn) occurs as corroded domains of prevailing homogeneous pattern, followed by less evolved oscillatory zonation. Primary CGM were overprinted by extensive recrystallization controlled by late-magmatic to post-magmatic fluids and leading to a formation of complex patchy and convolute oscillatory domains of secondary (hydrothermal) CGM. Primary columbite-(Mn) shows significantly limited Ta/(Ta+Nb) and Mn/(Mn+Fe) ratios, whereas secondary columbite-(Fe) to -(Mn) show slightly wider Fe-Mn and Nb-Ta compositional variations. Complex textures and the element fluctuations indicate a partial dissolution-reprecipitation of primary CGM caused by late- to post-magmatic fluids. Moreover, late calciomicrolite I, II and fersmite precipitated on the cracks of columbite crystals. Rare U-rich calciomicrolite I was extensively replaced by fersmite and oscillatorily zoned U-poor calciomicrolite II, slightly enriched in F. Their formation sequestrated part of hydrothermally released Na, Ca, U and represents the final subsolidus fluid-driven stage of the pegmatite evolution. Textural and compositional variations of Nb-Ta mineralization point to a complex magmatic to hydrothermal evolution of the D6e beryl-columbite pegmatite similar to other pegmatites in this region.
Files
References
Abella PA, Corbella M, Melgarejo JC (1995) Nb-Ta- minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends. Mineral Petrol 55: 53-69. https://doi.org/10.1007/bf01162579
Alfonso P, Hamid SA, Garcia-Valles M, LLorens T, López Moro FJ, Tomasa O, Calvo D, Guasch E, Anticoi H, Oliva J, Parcerisa F, García Polonio G (2018) Textural and mineral-chemistry constraints regarding the columbite-group minerals in the Penouta deposit: evidences of magmatic and fluid-related processes. Mineral Petrol 82: 199-222. https://doi.org/10.1180/minmag.2017.081.107
Atencio D, Andrade MB, Christy AG, Gieré R, Kartashov PM (2010) The pyrochlore supergroup of minerals: Nomenclature. Can Mineral 48: 673-698. https://doi.org/10.3749/canmin.48.3.673
Badanina EV, Sitnikova MA, Gordienko VV, Melcher F, Gäbler HE, Lodziak J, Syritso LF (2015) Mineral chemistry of columbite-tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia). Ore Geol Rev 64: 720-735. https://doi.org/10.1016/j.oregeorev.2014.05.009
Bonazzi P, Bindi L, Zoppi M, Capitani GC, Olmi F (2006) Single-crystal diffraction and transmission electron microscopy studies of “silicified” pyrochlore from Narssârssuk, Julianehaab district, Greenland. Am Mineral 91: 794-801. https://doi.org/10.2138/am.2006.1777
Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23: 381-421
Černý P, Goad BE, Hawthorne FC, Chapman R (1986) Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am Mineral 71: 501-517
Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43: 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
Černý P, Novák M, Chapman R (1992) Effects of sillimanite-grade metamorphism and shearing on Nb,Ta-oxide minerals in granitic pegmatites: Maršíkov, northern Moravia, Czechoslovakia. Can Mineral 30: 699-718
Černý P, Novák M, Chapman R (1995) The Al (Nb,Ta) Ti-2 substitution in titanite: the emergence of a new species? Mineral Petrol 52: 61-73
Cháb J, Stráník Z, Eliáš M (2007) Geological map of the Czech Republic 1 : 500 000. Czech Geological Survey, Prague, Czech Republic
Chládek Š, Zimák J (2016) Association of Nb-Ta-(Ti-REE) oxide minerals in the Maršíkov - Lysá Hora pegmatite in Hrubý Jeseník Mountains, Czech Republic. Bull mineral-petrolog Odd Nár Muz (Praha) 24: 25-32
Christy AG, Atencio D (2013) Clarification of status of species in the pyrochlore supergroup. Mineral Mag 77: 13-20. https://doi.org/10.1180/minmag.2013.077.1.02
Chudík P, Uher P (2009) Minerály skupiny pyrochlóru z granitových pegmatitov Západných Karpát: variácie chemického zloženia a substitučné mechanizmy. Mineral Slov 41: 159-168
Chudík P, Uher P, Gadas P, Škoda R, Pršek J (2011) Niobium-tantalum oxide minerals in the Jezuitske Lesy granitic pegmatite, Bratislava Massif, Slovakia: Ta to Nb and Fe to Mn evolutionary trends in a narrow Be,Cs-rich and Li,B-poor dike. Mineral Petrol 102: 15-27. https://doi.org/10.1007/s00710-011-0163-9
Dostál J (1966) Mineralogische und Petrographische Verhältnisse von Chrysoberyll-Sillimanit Pegmatit von Maršíkov. Acta Univ Carol, Geol 4: 271-287
Duran ChJ, Seydoux-Guillaume AM, Bingen B, Gouy S, Parseval P, Ingrin J, Guillaume D (2016) Fluid-mediated alteration of (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals in granitic pegmatite from the Evje-Iveland district, southern Norway. Mineral Petrol 110: 581-599. https://doi.org/10.1007/s00710-016-0436-4
Ercit TS (1994) The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville Province, Canadian Shield. Can Mineral 32: 421-438
Ewing RC (1994) The metamict state: 1993 the centennial. Nuclear Instrum Methods Phys Res 91: 22-29
Geisler T, Berndt J, Meyer HW, Pollok K, Putnis A (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between Nature and experiment. Mineral Mag 68: 905-922. https://doi.org/10.1180/0026461046860230
Geisler T, Seydoux-Guillaume AM, Poeml P, Golla-Schindler U, Berndt J, Wirth R, Pollok K, Janssen A, Putnis A (2005) Experimental hydrothermal alteration of crystalline and radiation-damaged pyrochlore. J Nucl Mater 344: 17-23. https://doi.org/10.1016/j.jnucmat.2005.04.009
Hegner E, Kröner A (2000) Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspatic reconstruction. In: Franke W (ed) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, Special Publications, London: 113-129. https://doi.org/10.1144/gsl.sp.2000.179.01.09
Holten T, Jamtveit B, Meakin P (2000) Noise and oscillatory zoning of minerals. Geochim Cosmochim Acta 64: 1893-1904. https://doi.org/10.1016/s0016-7037(99)00444-5
Janoušek V, Aichler J, Hanžl P, Gerdes A, Erban V, Žáček V, Pecina V, Pudilová M, Hrdličková K, Mixa P, Žáčková E (2014) Constraining genesis and geotectonic setting of metavolcanic complexes: a multidisciplinary study of the Devonian Vrbno Group (Hrubý Jeseník Mts., Czech republic). Int J Earth Sci 103: 455-483. https://doi.org/10.1007/s00531-013-0975-4
Kröner A, O´Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138: 127-142. https://doi.org/10.1007/s004100050013
Kruťa T, Paděra K, Pouba Z, Sládek R (1968) Die Mineralparagenese in dem mittleren Teile des Altvatergebirges (Hrubý Jeseník, Hohe Gesenke, ČSSR). Čas Mor Mus 53: 5-80
Lahti SI (2000) Compositional variation in columbite-group minerals from different types of granitic pegmatites of the Eräjärvi district, South Finland. J Czech Geol Soc 45: 107-118
Loun J, Novák M, Cempírek J, Škoda R, Vašinová Galiová M, Prokeš L, Dosbaba M, Čopjaková R (2018) Geochemistry and secondary alterations of microlite from eluvial deposits in the Numbi mining area, S. Kivu, Democratic Republic of the Congo. Can Mineral 56: 1-18. https://doi.org/10.3749/canmin.1700091
Lumpkin GR, Chakoumakos BC, Ewing RC (1986) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. Am Mineral 71: 569-588
Lumpkin GR, Ewing RC (1992) Geochemical alteration of pyrochlore group minerals: Microlite subgroup. Am Mineral 77: 179-188
Lumpkin GR, Ewing RC (1995) Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. Am Mineral 80: 732-743. https://doi.org/10.2138/am-1995-7-810
Lumpkin GR, Ewing RC (1996) Geochemical alteration of pyrochlore group minerals: Betafite subgroup. Am Mineral 81: 1237-1248. https://doi.org/10.2138/am-1996-9-1022
McNeil AG (2018) Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts. Dizertační práce, University of Western Ontario: 393 s
Melcher F, Graupner T, Gäbler HE, Sitnikova M, Henjes-Kunst F, Oberthür T, Gerdes A, Dewaele S (2015) Tantalum - (niobium - tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta - Nb oxide mineralogy, geochemistry and U - Pb geochronology. Ore Geol Rev 64: 667-719. https://doi.org/10.1016/j.oregeorev.2013.09.003
Mikulski SZ, Williams IS, Bagiński B (2013) Early Carboniferous (Viséan) emplacement of the collisional Kłodzko-Złoty Stok granitoids (Sudetes, SW Poland): constraints from geochemical data and zircon U-Pb ages. Int J Earth Sci 102: 1007-1027. https://doi.org/10.1007/s00531-012-0852-6
Neiva AMR, Gomes CL, Silva PB (2015) Two generations of zoned crystals of columbite-group minerals from granitic aplite-pegmatite in the Gouveia area, central Portugal. Eur J Mineral 27: 771-782. https://doi.org/10.1127/ejm/2015/0027-2473
Novák M (1988) Granáty z pegmatitů Hrubého Jeseníku (severní Morava). Acta Mus Moraviae, Sci nat 73: 3-28
Novák M (2005) Granitické pegmatity Českého masívu (Česká republika); mineralogická, geochemická a regionální klasifikace a geologický význam. Acta Mus Moraviae, Sci geol 90: 3-74
Novák M, Rejl L (1993) Vztah muskovitických pegmatitů ke geofyzikálním polím v oblasti Hrubého Jeseníku. Acta Mus Moraviae, Sci nat 77: 49-61
Novák M, Černý P (1998) Niobium - Tantalum oxide minerals from complex granitic pegmatites in the Moldanubicum, Czech Republic: Primary versus secondary compositional trends. Can Mineral 36: 659-672
Novák M, Černý P, Uher P (2003) Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite pegmatite, Maršíkov, Czech Republic. Eur J Mineral 15: 565-574. https://doi.org/10.1127/0935-1221/2003/0015-0565
Novák M, Chládek Š, Uher P, Gadas P (2018) Complex magmatic and subsolidus compositional trends of columbite-tantalite in the beryl-columbite Šejby granitic pegmatite, Czech Republic: role of crystal-structural constraints and associated minerals. J Geosci 63: 253-263. https://doi.org/10.3190/jgeosci.269
Pokorný J, Staněk J (1951) Berylový pegmatit ze Scheiengraben u Maršíkova. Práce Moravskoslez Akad, Vědy Přír 7: 247-258
Pouchou JL, Pichoir F (1985) “PAP“ (phi-rho-z) procedure for improved quantitative microanalysis. In: Armstrong, JT (ed) Microbeam Analysis. San Francisco Press, San Francisco: 104-106
Rao C, Wang RCh, Hu H, Zhang WL (2009) Complex internal textures in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian province, Southeastern China. Can Mineral 47: 1195-1212. https://doi.org/10.3749/canmin.47.5.1195
Rudolph P (2015) Handbook of crystal growth, Vol. II. Elsevier 1-43
Schulmann K, Gayer R (2000) A model for continental acrectionary wedge developed by oblique collision: the NE Bohemian Massif. J Geol Soc London 157: 401-416. https://doi.org/10.1144/jgs.157.2.401
Schulmann K, Oliot E, Košuličová M, Montigny R, Štípská P (2014) Variscan thermal overprints exemplified by U-Th-Pb monazite and K-Ar muscovite and biotite dating at the eastern margin of the Bohemian Massif (East Sudetes, Czech Repubic). J Geosci 59: 389-413. https://doi.org/10.3190/jgeosci.180
Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, Parseval P, Paquette JL, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem Geol 330-331: 140-158. https://doi.org/10.1016/j.chemgeo.2012.07.031
Seydoux-Guillaume AM, Bingen B, Paquette JL, Bosse V (2015) Nanoscale evidence for uranium mobility in zircon and the discordance of U-Pb chronometers. Earth Planet Sci Lett 409: 43-48. https://doi.org/10.1016/j.epsl.2014.10.044
Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34: 1111-1126
Škoda R, Novák M (2007): Y,REE,Nb,Ta,Ti-oxide (AB2O6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos 95: 43-57. https://doi.org/10.1016/j.lithos.2006.07.020
Van Lichtervelde MV, Salvi S, Beziat D (2007) Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco Lower Pegmatite, Manitoba, Canada. Econ Geol 102: 257-276. https://doi.org/10.2113/gsecongeo.102.2.257
Van Lichtervelde MV, Holtz F, Melcher F (2018) The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: Constraints from crystallization experiments of tantalite-tapiolite. Am Mineral 103: 1401-1416. https://doi.org/10.2138/am-2018-6441
Wang RC, Fontan F, Xu SJ, Chen XM (1997) The association of columbite, tantalite and tapiolite in the Suzhou granite, China. Can Mineral 35: 699-706
Wise MA, Francis CA, Černý P (2012) Compositional and structural variations in columbite-group minerals from granitic pegmatites of the Brunswick and Oxford fields, Maine: differential trends in F-poor and F-rich environments. Can Mineral 50: 1515-1530. https://doi.org/10.3749/canmin.50.6.1515
Zachovalová K, Leichmann J, Švancara J (2002) Žulová Batolith: a post-orogenic, fractionated ilmenite-allanite I-type granite. J Czech Geol Soc 47: 1-2
Zietlow P, Beirau T, Mihailova B, Groat LA, Chudy T, Shelyug A, Navrotsky A, Ewing RC, Schlütter J, Škoda R, Bismayer U (2017) Thermal annealing of natural, radiation-damaged pyrochlore. Z Kristallogr - Crystalline Materials 232: 25-38. https://doi.org/10.1515/zkri-2016-1965
Zimák J (2013) Uran a thorium v granitických pegmatitech a aplitech silezika. Geol Výzk Mor Slez 2012: 162-166. https://doi.org/10.5817/gvms2013-1-2-162