ISSN

print 2570-7337
online 2570-7345

A revision and new findings of phosphates from the historical locality Černovice near Tábor (Czech Republic)


Volume 25, issue 2 (2017), pages 277-305

Keywords

Abstract

An interesting supergene phosphate and uranium mineral association was found on the historical wavellite occur- rence Černovice near Tábor (Vysočina region, Czech Republic). Phosphates are bound to cracks and cavities in graphitics gneisses and quartzites. Beraunite forms radially fibrous greenish, greenish brown to reddish brown aggregates up to 1.5 mm in size; its empirical formula is (Fe2+0.58Zn2+0.08)Σ0.66(Fe3+4.44Al3+0.56)Σ5.00[(PO4)3.86(SiO4)0.13(VO4)0.01]Σ4.00

(OH)4.45·6H2O and refined unit-cell parameters are a 20.647(4), b 5.1332(15), c 19.214(4) Å, β 93.6(3)° and V 2032.3 Å3. Carnotite was found as yellow powdery aggregates up to 1 mm accross in association with metatorbernite, phosphosiderite and metavariscite; its empirical formula is  K1.88Ba0.10Ca0.01(UO2)1.99(VO4)2.00·3H2O. Historically known wavellite has been redefined as fluorwavellite. It is the most abundant phosphate in the studied mineral association, it usually occurs as spherical aggregates up to 5 mm in size. Its colour is significantly zonal, from blue in the centre of aggregates to yellow in the marginal part. Its empirical formula (Al2.74V0.12Cr0.01Fe0.01K0.01)Σ2.89[(PO4)1.98(SiO4)0.02]Σ2.00(F0.72(OH)0.28) (OH)1.57·5H2O and refined unit-cell parameters are a 9.6285(13), b 17.374(3), c 6.9953(8) Å, V 1170.2(3) Å3. Phosphosiderite-metavariscite forms light green crusts on quartz crystals thickeness up to 0.1 mm; its empirical formula is (Fe0.57Al0.40)Σ0.97[(PO4)0.99(VO4)0.01]Σ1.00F0.03·2H2O and refined unit-cell parameters are a 5.324(14), b 9.83(2), c 8.722(19) Å, β 90.6(3)° and V 456(1) Å3.  Cacoxenite occurs as yellow crusts an radial aggregates up to 0.2 m in size with empirical formula K0.07Ca0.06Fe3+20.21Al3.89O6.00[(PO4)16.66(SiO4)0.28(VO4)0.06]Σ17.00(OH)9.75·75H2O and unit-cell parameters: a 27.556(9), c 10.5570(3) Å, and V 6942.4(8) Å3.  Kidwellite occurs as green spherical aggregates up to 0.1 mm in size. Its empirical formula is (Na0.56K0.030.41)Σ1.00(Al1.16Ca0.26Mg0.06Fe3+8.15)Σ9.63[(PO4)5.91(VO4)0.06(SiO4)0.03]Σ6.00(OH)11.20·3H2O and refined unit-cell parameters are a 20.12(12), b 5.187(18), c 13.974(9) Å, β  107.1(6)° and V 1395(1) Å3. Leucophosphite was found only as a very rare yellow to yellowish green tabular crystals and their aggregates up to 0.01 mm in size on hemispherical beraunite; it was verified only by Raman spectroscopy and qualitative EDS analysis. Metatorbernite forms green tabular crystals up to 3 mm in size; its empirical formula is (Cu1.13Ca0.01)Σ1.14(UO2)1.97[(PO4)1.99(VO4)0.01]Σ2.00

·8H2O and refined unit-cell parameters are a 6.969(4), c 17.3316(3) Å, and V 841.9(5) Å3. Natrodufrénite was found as dark green to bluish green aggregates with light green or yellowish green zones forming radial aggregates up to  1.5 mm in size; its empirical formula is (Na0.65Ca0.13K0.010.21)Σ1.00(Fe2+0.96Zn0.04)Σ1.00(Fe3+4.44Al0.34)Σ4.78[(PO4)3.93 (SiO4)0.07]Σ4.00(OH)5.33·2H2O and refined unit-cell parameters are a 25.872(12), b 5.149(3), c 13.785(8) Å, β 111.5(5)° and V 1708(1) Å3. Strengite was observed as spherical aggregates of white, light gray, beige or yellow to orange color up to 4 mm in size in four different mineral associations; empirical formulas of three most common strengites are: Fe0.77Al0.21(PO4)1.00·2H2O (strengite I; association with natrodufrénite); Fe0.92Al0.06(PO4)1.00·2H2O (strengite II; association with turquoise); Fe0.84Al0.10((PO4)0.98(VO4)0.02)Σ1.00·2H2O (strengite III; association with kidwellite); refined unit-cell parameters for all studied types are comparable a 8.720(4), b 9.877(5), c 10.115(5) Å and V 871.1(7) Å3. Turquoise forms apple green zonal crystals up to 0.1 mm in size; empirical formula (Cu0.590.35K0.03Zn0.02Ca0.01)Σ1.00(Al5.03Fe3+0.81)Σ5.84

[(PO4)3.64(PO3OH)0.35(SiO4)0.01]Σ4.00(OH)6.40F0.37.4H2O (central parts of aggregates) and (Cu0.700.25K0.01Zn0.03Ca0.01)Σ1.00

(Al4.28Fe3+1.52)Σ5.80[(PO4)3.73(PO3OH)0.25(SiO4)0.01]Σ3.99(OH)6.76F0.13·4H2O (marginal parts) and unit-cell parameters are a 7.425(8), b 7.628(7), c 9.921(8) Å, α 68.59(7)°, β 69.67(8)°, γ 65.08(7)° and V 461.8(5) Å3. Two varieties of variscite was observed; white variscite forms crusts on the surface of spherical aggregates of the strengite II; its empirical formula is Al0.87Fe0.14(PO4)1.00F0.03·2H2O; and green variscite with Al0.97Fe0.05((PO4)0.98(SiO4)0.01(VO4)0.01)Σ1.00F0.05·2H2O  was found as light green crusts of thickness up to 1 mm in size. Unit-cell parameters of green variscite are a 9.909(4), b 9.664(3), c 17.184(6) Å, V 1645.5(6) Å3.

Files

Abstract (PDF) - 217.68KB
Fulltext (PDF) - 6.88MB

References

Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2000) Handbook of Mineralogy. Volume IV Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, 1-680

Bernard JH, Čech F, Dávidová Š, Dudek A, Fediuk F, Hovorka D, Kettner R, Koděra M, Kopecký L, Němec D, Paděra K, Petránek J, Sekanina J, Staněk J, Šímová M (1981) Mineralogie Československa. Academia, 648

Breiter K, Škoda R, Veselovský F (2009) Neobvyklý P-, Li- a Sn-bohatý pegmatit z Vernéřova u Aše, Česká republika. Bull mineral-petrolog Odd Nár Muz (Praha) 17(1): 41-59.

Breithaupt JFA (1841) Beraunit. In Vollständige Charakteristik des Mineral-Systems, Arnoldische Buchhandlung (Dresden and Leipzig) 136

Cid-Dressner H (1965) Determination and refinement of the crystal structure of turquois, CuAl6(PO4)4(OH)8.4H2O. Zeit Krist 121: 87-113

Downs RT (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03-13

Dudek A, Fediuk F, Havlena V, Kunžvart M. (1954) Výsledky pátrání po devonských vápencích na Pelhřimovsku. Věst Ústř Úst geol 29: 262-266

Fanfani L, Zanazzi PF (1966) La struttura cristallina della metastrengite. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Serie 8(40): 889

Fanfani L, Zanazzi PF (1967) The crystal structure of beraunite. Acta Cryst 22: 173-181

Fontan F, Pillard F, Permingeat F, (1982) La natrodufrénite (Na,)(Fe+++,Fe++)(Fe+++,Al)5 (PO4)4(OH)6.2H2O, une nouvelle espèce minérale du groupe de la dufrenite. Bull Minéral 105: 321-326

Foord EE, Taggart JEjr (1998) A reexamination of the turquoise group: the mineral aheylite, planerite (redefined), turquoise and coeruleolactite. Mineral Mag 62: 93-111

Chukanov NV, Aksenov SM, Rastsvetaeva RK, Schäfer C, Pekov IV, Belakovskiy DI, Scholz R, de Oliveira LCA, Britvin SN (2017) Eleonorite, Fe3+6(PO4)4O(OH)4·6H2O: validation as a mineral species and new data. Mineral Mag 81: 61-76

Kadlec T, Vrtiška L (2016) Výskyt ilmenitu v okolí obce Křeč u Černovic na Táborsku. Minerál 24(3): 240-241

Kampf AR, Adams PM, Barwood H, Nash BP (2015) Fluorwavellite, IMA 2015-077. CNMNC Newsletter 28, 1862; Mineral Mag 79: 1859-1864

Kampf AR, Adams PM, Barwood H, Nash BP (2017) Fluorwavellite, Al3(PO4)2(OH)2F·5H2O, the fluorine analogue of wavellite. Am Mineral 102: 909-915

Kniep R, Mootz D (1973) Metavariscite - a redetermination of its crystal structure. Acta Cryst B29: 2292-2294

Kolitsch U (2004) The crystal structures of kidwellite and ‘laubmannite’, two complex fibrous iron phosphates. Mineral Mag 68(1): 147-165

Kratochvíl J (1929) Příspěvek k historii dolování a k mineral. topografii Čech. Věst Stát geol Úst 5: 95-101

Kratochvíl J. (1948) Geologie, petrografie a mineralogie okolí Černovic. In Schäferová M (1948) Černovický sborník 53-65. Vyd Sdružení rodáků a přátel města Černovic u Tábora a okolí, Praha

Laugier J, Bochu B (2011) LMGP-Suite of Programs for the interpretation of X-ray experiments. http://www.ccp14.ac.uk/tutorial/lmgp. přístup duben 2011

Lehrieder E, Černý P (1999) Der Steinbruch am Hügel Kněžský bei Těškov in Böhmen/Tschechien. Aufschluss 50: 79-95

Locock AJ, Burns PC (2003) Crystal structures and synthesis of the copper - dominant members of the autunite and meta-autunite groups: torbernite, zeunerite, metatorbernite and metazeunerite. Can Mineral 41: 498-502

Moore PB (1970) Crystalochemistry of the basic iron phosphates. Am Mineral 55: 135-169

Moore PB, Ito J (1978) Kidwellite, NaFe3+9(OH)10 (PO4)6·5H2O, a new species. Mineral Mag 42: 137-140

Moore PB, Shen J (1983) X-ray structural study of cacoxenite, a mineral phosphate. Nature 306: 356-358

Orlov A (1929) Wavellit od Černovic u Tábora a jeho paragenese. Rozpr Čes Akad, II tř 39(38): 1-39

Orlov A (1931) Wavellit von Černovic bei Tábor (Böhmen) und die erdigen Phosphate aus seiner Paragenese. Zeit Kristall 77: 317-336

Pauliš P (2011) Nový přehled minerálů České republiky a jejich lokalit, 2. díl. Kuttna, 115

Pauliš P, Sejkora J, Urban M, Nesrsta M, Vrtiška L, Malíková R, Pour O, Laufek F (2016) Uranová supergenní mi­neralizace s fosfuranylitem z Abertam, Krušné hory (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 24(1): 46-55

Pauliš P, Venclík V, Malíková R, Pour O, Sejkora J (2015) Fosfosiderit ze Zdechovic a Chvaletic u Přelouče v Železných horách (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 23(2): 208-213

Plášil J, Sejkora J, Ondruš P, Veselovský F, Beran P, Goliáš V (2006) Supergene minerals in the Horní Slavkov uranium ore district, Czech Republic. J Czech geol Soc 51(1-2): 149-158

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Microbeam Analysis (J. T. Armstrong, ed.) 104-106, San Francisco Press, San Francisco

Roda-Robles E, Fontan F, Pesquera Pérez A, Keller P (1998) The Fe-Mn phosphate associations from the Pinilla de Fermoselle pegmatite, Zamora, Spain: occurrence of kryzhanovskite and natrodufrénite. Eur J Mineral 10: 155-167

Salvador PS, Fayos J (1972) Some aspects of the structural relationship between “Messbach-type” and “Lucin-type” variscites. Am Mineral 57: 36-44

Sejkora J, Cícha J, Jebavá I (2011) Minerální asociace fosfátů z Čížové u Písku (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 19(1): 1-26

Sejkora J, Houzar S, Šrein V (1999) Vanadový wavellit a variscit z puklin grafitických kvarcitů na západní Moravě. Bull mineral-petrolog Odd Nár Muz (Praha) 7: 197-204

Sejkora J, Süsser C, Plášil J (2007) Natrodufrénit a asociace fosfátů, ložisko Vysoký Kámen - greisen, Krásno u Horního Slavkova. Bull mineral-petrolog Odd Nár Muz (Praha) 14-15: 116-125

Sejkora J, Škoda R, Ondruš P, Beran P, Süsser C (2006) Mineralogy of phosphate accumulations in the Huber Stock, Krásno ore district, Slavkovský les area, Czech Republic. J Czech Geol Soc 51(1-2): 103-147

Sellner F (1923) Der Pegmatit von Königswart. Z Kristallogr Petrol Mineral 59: 504

Selway JB, Cooper MA, Hawthorne FC (1997) Refinement of the crystal structure of burangaite. Can Mineral 35: 1515-1522

Staněk J (1955) K paragenezi fosfátů z Cyrilova u Velkého Meziříčí. Čas Mor mus, 40: 69-80

Streng A (1881) Über die phosphate von Waldgirmes. Neu Jb Mineral Geol Paläont 2: 101-119

Šikola D (2001) Přehled mineralogických výzkumů rudního pole Rožná - Olší. Minerál 9(2): 124-134

Taxer K, Bartl H (2004) On the dimorphy between the variscite and clinovariscite group: refined finestructural relationship of strengite and clinostrengite, Fe(PO4).2H2O. Crystal Research Technol 39: 1080-1088

Vrtiška L, Loun J, Malíková R, Sejkora J (2016a) Fluorwavellit a variscit z Počepic u Sedlčan (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 24(2): 285-297

Vrtiška L, Malíková R, Sejkora J (2016b) Zajímavý výskyt fosfátů v okolí Líštěnce u Votic (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 24(1): 114-131

Vrtiška L, Sejkora J, Nováková H, Vašinová Galiová M (2013) Metatorbernit a lithioforit z uranového ložiska Předbořice (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 21(2): 240-248