PŮVODNÍ PRÁCE/ORIGINAL PAPER

Nové údaje o supergénnych mineráloch z polymetalického ložiska Čavoj, Strážovské vrchy (Slovenská republika)

New data on supergene minerals from the Čavoj base metal deposit, Strážovské vrchy Mts. (Slovak Republic)

Martin Števko^{1)*}, Roman Gramblička²⁾ a Radana Malíková³⁾

¹⁾Univerzita Komenského v Bratislave, Prírodovedecká fakulta, Katedra mineralógie a petrológie, Ilkovičova 6, 842 15 Bratislava 4, Slovenská republika; *e-mail: stevko@fns.uniba.sk

²⁾Severočeské doly, a.s., OMG SD a.s., oddělení geologie DB, UI. 5. Května 213, 418 01 Bílina, Česká republika ³⁾Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9 - Horní Počernice,

Česká republika

ŠTEVKO M., GRAMBLIČKA R., MALÍKOVÁ R. (2015) Nové údaje o supergénnych mineráloch z polymetalického ložiska Čavoj, Strážovské vrchy (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 23, 1, 63-74. ISSN 1211-0329.

Abstract

An interesting association of supergene minerals represented by anglesite, aragonite, brianyoungite, cerussite, gypsum, hemimorphite, malachite, mimetite, pyromorphite and wulfenite was found at the Čavoj base metal deposit, Strážovské vrchy Mts., Slovak Republic. Brianyoungite occurs as white crystalline coatings and irregular to spherical aggregates, which consist of thin-tabular crystals up to 0.1 mm in size. It was found together with aragonite and gypsum on the surface of ore fragments at the dumps of Geschenk and Ferdinand shaft. The refined unit-cell parameters of brianyoungite from the powder X-ray data are: a 15.710(8) Å, b 6.273(7) Å, c 5.45(1) Å, V = 537(1) Å³. Cerussite is the most abundant supergene phase. It forms well developed colourless to white tabular or prismatic crystals up to 5 mm in size, associated together with anglesite, mimetite, pyromorphite and wulfenite. Its refined unit-cell parameters are: a 5.189(1) Å, b 8.507(2) Å, c 6.152(1) Å, V 271.56(9) Å³. Hemimorphite was identified at the dumps situated near Strieborná adit as white hemispherical crystalline aggregates up to 2 mm in the fissures of sphalerite-rich gangue. It is orthorhombic, space group Imm2 and the unit-cell parameters refined from X-ray powder diffraction data are: a 8.3634(8) Å, b 10.711(1) Å, c 5.1134(5) Å, and V 458.07(8) Å³. Mimetite is rare mineral and it occurs only at the Baniská area. It forms bright yellow to yellowish-green crystalline aggregates and crusts, which are composed by prismatic crystals up to 1 mm in size. Its unit-cell parameters refined from powder X-ray data are: a 10.236(10) Å, c 7.4126(9) Å and V 673(1) Å³. Mimetite from the Čavoj deposit contain only minor amounts of Ca (up to 0.33 apfu) and P (up to 0.39 apfu) with the empirical formula (average of 6 point analyses) corresponding to $(Pb_{5,11}Ca_{0,21})_{\Sigma 5,32}[(AsO_4)_{2,77}(PO_4)_{0,23}]_{\Sigma 3,00}Cl_{1,17}$ on the basis of P+As+V+Si+S=3 apfu. Pyromorphite was identified in several samples from the Ferdinand shaft dump as pale-green to pale-yellow prismatic crystals up to 2 mm in size, which are often grouped to the crystalline crusts and aggregates together with cerussite and wulfenite. The refined unit-cell parameters of pyromorphite are: a 9.986(8) Å, c 7.3528(3) Å and V 635.0(5) Å³. Only minor amounts of Ca (up to 0.19 apfu) and As (0.07 apfu) were detected in studied samples of pyromorphite and its empirical formula (average of 9 point analyses) is corresponding to $(Pb_{4.97}Ca_{0.10})_{55.07}[(PO_{4})_{2.95}]$ (AsO₄)_{0.05}]_{23.00}Cl_{1.15} on the basis of P+As+V+Si+S=3 apfu. Wulfenite is rare supergene phase at the studied locality (dump of Ferdinand shaft) and it occurs as well developed, orange pyramidal crystals up to 1 mm in size together with cerussite and pyromorphite. It is tetragonal, space group /4,/a and its unit-cell parameters refined from X-ray powder diffraction data are: a 5.435(1) Å, c 12.1065(2) Å and V 357.59(9) Å³. Its chemical composition is close to the end member formula with only insignificant amounts of P and As (both up to 0.01 apfu) and empirical formula (average of 5 point analyses) corresponding to $Pb_{1.00}[(MoO_4)_{0.98}(AsO_4)_{0.01}(PO_4)_{0.01}]_{\Sigma_{1.00}}$ on the basis of Mo+W+As+P=1 *apfu*. On the basis of detailed paragenetic study two principal associations of supergene minerals were distinguished at the Čavoj deposit: a) supergene phases (e.g. cerussite, hemimorphite, mimetite, pyromorphite or wulfenite) formed by in-situ decomposition of primary ore minerals in the supergene zone or b) supergene minerals of sub-recent origin, which were formed by the weathering of ore fragments in dump environment (e.g. aragonite, brianyoungite and gypsum).

Key words: supergene minerals, brianyoungite, cerussite, hemimorphite, mimetite, pyromorphite, wulfenite, X-ray powder data, chemical composition, Čavoj, Strážovské vrchy Mts., Slovak Republic Obdrženo: 25. 3. 2015; přijato: 20. 5. 2015

Obr. 1 Situačná mapa banských prác na lokalite Čavoj: a - Baniská; b - Strieborná štôla; c - šachta Geschenk; d - šachta Ferdinand.

Úvod

Na území Slovenskej republiky sa nachádza niekoľko historicky významných ložísk a výskytov polymetalickej mineralizácie, ako Ardovo, Banská Štiavnica, Čavoj, Hnúšťa-Ostrá I, Hodruša-Hámre, Horná Lehota-Dve Vody, Jasenie-Soviansko, Jelšava, Malužiná-Olovienky, Ochtiná-Mária-Margita, Pernek-Pod Babou, Poniky-Drienok, Poniky-Stráž, Valkovňa-Lívius-Samuel alebo Veľké Pole-Píla. Aj napriek tejto skutočnosti komplexné poznatky o supergénnych mineráloch z týchto lokalít často chýbajú alebo pochádzajú ešte z 19. storočia (napr. Zipser 1817; Jonas 1820; Zepharovich 1859, 1873; Schmidt 1877; Tóth 1882; Tokody 1926). Detailnejšie boli supergénne minerály spracované len na lokalite Ardovo (Schmidt 1884, 1885; Pauliš 1977), Poniky-Drienok (Rieder, Povondra 1961), Ochtiná-Mária-Margita (Kozlovský, Matherny 1960; Mrázek, Ďuďa 1983; Števko, Bálintová 2008; Števko et al. 2010) a v poslednom období pribudli aj údaje z lokality Liptovský Ján-jaskyňa Zlomísk (Ozdín et al. 2001), Jasenie-Soviansko (Luptáková, Chovan 2003; Števko, Ozdín 2012), Valaská Belá (Števko et al. 2008) a Hodruša-Hámre - Juraj štôlňa (Števko, Malíková 2014).

Tento príspevok je zameraný na detailnú mineralogickú charakteristiku novo zistených supergénnych fáz na ložisku Čavoj a zároveň rozširuje doterajšie poznatky o výskyte niektorých supergénnych minerálov na území Slovenskej republiky.

Geologicko-ložiskové pomery

Systém hydrotermálnych polymetalických žíl sa nachádza na hrebeni ~ 2 km na SZ od obce Čavoj, v priestore medzi osadami Krpeľance, Sunegovci, Kučerovci,

Šindliarovci, Koškárovci a osadou Gápeľ (obr. 1) v Strážovských vrchoch. Vzorky so supergénnymi minerálmi boli odobraté z háld banských prác na nasledovných miestach: a) haldy prieskumnej štôlne a píng na Baniskách, b) haldy štôlní a píng nad Striebornou štôlňou, c) halda šachty Geschenk, d) halda šachty Ferdinand.

Hydrotermálna polymetalická mineralizácia je sústredená do žilného pásma so smerom SV - JZ a celkovou dĺžkou viac ako 3 km. Maximálna mocnosť jednotlivých žíl dosahuje 2 m, prevažne sú však značne tenšie (Mikoláš et al. 1995; Mikuš et al. 2003). Žily sú vyvinuté v kryštaliniku Suchého, ktoré v predmetnej oblasti pozostáva predovšetkým z granodioritov až tonalitov, leukokrátnych granitov, biotitických pararúl a

Obr. 2 Biele povlaky s kryštalické agregáty brianyoungitu v asociácii spolu so sadrovcom, šírka obrázku je 2.5 mm. Foto P. Škácha.

migmatitov (Kahan 1980; Maheľ 1983, 1985; Dyda 1990). Granitoidné horniny masívu Suchého majú S-typové charakteristiky a ich typickou črtou je prítomnosť sillimanitu (Putiš 1982; Hovorka, Fejdi 1983; Vilinovičová 1990; Čík, Petrík 2012).

Hydrotermálna polymetalická mineralizácia na lokalite Čavoj vznikla v troch štádiách. V prvom (kremeňovosideritovom) štádiu z rudných minerálov prevláda pyrit, arzenopyrit a gersdorffit. Mladšie (kremeňovo-karbonátovo-sulfidické) štádium, ktoré má na lokalite dominantné postavenie, je charakteristické prítomnosťou galenitu, sfaleritu, Ag-tetraedritu až freibergitu, chalkopyritu, bournonitu, akantitu, pyrargyritu, stefanitu, polybazitu a striebra. Z karbonátov prevláda Fe-bohatý dolomit. Najmladšie štádium je reprezentované žilami baritu s kremeňom a hematitom. Zo supergénnych minerálov bol v Čavoji identifikovaný anglesit, azurit, bornit, ceruzit, covellit, chalkozín, kuprit, *limonit* a malachit (Šlepecký et al. 1992; Mikoláš et al. 1995; Mikuš et al. 2003). Izotopové zloženie síry z baritu z Čavoja je δ^{34} S = +23.7 ‰ (Kantor, Ďurkovičová 1977) a izotopové zloženie kyslíka a uhlíka v kalcite sa pohybuje v rozmedzí $\delta^{13}C_{_{PDB}}$ od -5.44 do +8.79 ‰ a $\delta^{18}O_{_{SMOW}}$ od +14.68 do +20.48 ‰ (Repčok et al. 1993). Mikuš et al. (2003) zaraďujú žily v Čavoji aj napriek výraznému zastúpeniu polymetalického zrudnenia k sideritovému typu mineralizácie.

Najstaršie správy o ťažbe striebra a olova v Čavoji pochádzajú z rokov 1568-1569 (Mikoláš et al. 1995). O ťažbe na ložisku začiatkom 16. storočia svedčí aj listina o dodaní 1000 centov olova pre sliezsku komoru v roku 1609 a 800 centov olova v roku 1613. Z roku 1650 pochádza záznam o pozemkových sporoch súvisiacich s ťažbou na ložisku. V roku 1780 prejavila záujem o ložisko grófska banská komora v Banskej Štiavnici. Na základe posudku oberhutmana Richtera boli v roku 1783 bane v Cavoji komorou odkúpené a začalo sa z rozsiahlym banským prieskumom celého ložiska. O výsledkoch tohto prieskumu podal v roku 1795 správu cisársko-kráľovský banský radca Franz Corneli von Hell, ktorý navrhuje všetky práce na ložisku z dôvodu nízkej kovnatosti a nepravidelného rozmiestnenia zrudnenia ihneď zastaviť. Hell uvádza, že celkové náklady na prieskum dosiahli viac ako 8427 florénov, pričom vyťažená ruda má hodnotu najviac 737 florénov. Na základe tejto správy boli ešte v roku 1795 všetky banské práce na ložisku zastavené (Holec 1968). K opätovnému obnoveniu prieskumných prác na ložisku došlo až v roku 1941 riaditeľstvom štátnych baní v Banskej Štiavnici. Bola vyrazená štôlňa Eleonóra, ktorá podfárala staršie banské práce a dosiahla celkovú dĺžku 270 m. Aj tieto prieskumné práce boli v roku 1944 zastavené z dôvodu negatívnych výsledkov resp. nízkej kovnatosti zisteného zrudnenia (Holec 1968; Mikoláš et al. 1995). Pomerne rozsiahly prieskum pomocou vrtov a rýh prebiehal na ložisku Čavoj začiatkom 90-tych rokov 20. storočia. Celkovo bolo na I. rudnej štruktúre (oblasť štôlne Eleonóra-Jozef-Nepomuk) vypočítaných 260 kt nebilančných polymetalických rúd v kategórii Z-3 s priemerným obsahom úžitkových kovov: Ag 51.31 g/t, Pb 1.71 % a Zn 0.189 %. Prognózne zdroje na II. a III. rudnej štruktúre (štôlňa Mendel - šachta Ferdinand - šachta Geschenk štôlňa Alte-Baniská) predstavújú 1100 kt v kategórii P1 s obsahom úžitkových kovov Ag 3.85 g/t, Pb 0.57 % a Zn 0.33 % (Mikoláš et al. 1995).

Obr. 3 Detail agregátu brianyoungitu zloženého z tenkotabuľkovitých až lístkovitých kryštálov. SEM foto *M.* Števko.

Tabuľka 1 Röntgenové práškové údaje brianyoungitu z Čavoja

h	k	1	d _{obs}	I _{obs}	d _{calc}
1	0	0	15.491	31	15.609
2	0	0	7.809	100	7.855
3	0	0	5.219	16	5.237
3	1	0	4.032	<1	4.017
4	0	0	3.920	5	3.927
0	2	0	3.138	<1	3.136
0	2	1	2.706	<1	2.711
3	2	0	2.699	<1	2.689
2	0	2	2.575	<1	2.574
7	0	0	2.2442	<1	2.2442
8	0	0	1.9650	<1	1.9637
9	0	0	1.7470	1	1.7455
9	1	0	1.6794	<1	1.6811
5	3	1	1.6553	<1	1.6544
6	3	0	1.6301	<1	1.6328
9	1	1	1.6048	<1	1.6052
10	0	0	1.5721	<1	1.5710
7	2	2	1.5133	<1	1.5126
0	4	1	1.5042	<1	1.5043
3	2	3	1.5013	<1	1.5013
9	0	2	1.4686	<1	1.4692

Tabuľka 2 Mriežkové parametre brianyoungitu z Čavoja (indexované v monoklinickej priestorovej grupe P2,/m) a ich porovnanie s publikovanými údajmi

	táto práca	Livingstone, Champness (1993)
a [Å]	15.710(8)	15.724
b [Å]	6.273(7)	6.256
c [Å]	5.45(1)	5.427
V [ų]	537(1)	533.85

Obr. 4 Zrast kryštálov ceruzitu, šírka obrázku je 4 mm. Foto P. Škácha.

Obr. 5 Polguľovitý kryštalický agregát hemimorfitu, šírka záberu je 4 mm. Foto M. Števko.

Obr. 6 Žlté až žltozelené prizmatické kryštály mimetitu, šírka záberu je 2.5 mm. Foto P. Škácha.

Metodika výskumu

Povrchová morfológia vzoriek bola sledovaná v dopadajúcom svetle pomocou optického stereomikroskopu Zeiss Stemi 2000-C (P. Škácha, Hornické muzeum Příbram, ČR). Detailná morfológia supergénnych minerálov bola študovaná pomocou rastrovacieho elektrónového mikroskopu Jeol Superprobe JXA-840A (PriF UK, Bratislava, SR) za týchto podmienok: urýchľovacie napätie 15 kV, vzorkový prúd 6 nA.

Röntgenové práškové difrakčné údaje supergénnych minerálov boli získané pomocou práškového difraktometra Bruker D8 Advance (Katedra mineralógie a petrológie, PriF UK, Bratislava, SR) s polovodičovým pozične citlivým detektorom LynxEye s využitím CuKa žiarenia za nasledovných podmienok: napätie 40 kV, prúd 40 mA, krok 0.01° 20, čas 3 s/krok. Pripravené práškové preparáty boli pre zníženie pozadia záznamov nanesené v acetónovej suspenzii na nosiče zhotovené z monokryštálu Si. Získané difrakčné údaje boli vyhodnotené pomocou softvéru Bruker DIFFRAC^{plus} EVA a pozície jednotlivých difrakčných maxím boli spracované profilovou funkciou Pseudo-Voigt a spresnené pomocou profilového fitovania v programe HighScore Plus. Mriežkové parametre jednotlivých študovaných fáz boli spresnené metódou najmenších štvorcov pomocou programu Celref (Laugier, Bochu 2011).

Chemické zloženie mimetitu, pyromorfitu a wulfenitu bolo kvantitatívne študované pomocou elektrónového mikroanalyzátora Cameca SX100 (Štátny geologický ústav Dionýza Štúra, Bratislava, SR) za týchto podmienok: vlnovo-disperzná analýza, napätie 15 kV, prúd 20 nA, priemer elektrónového lúča 2-5 µm, štandardy: LiF (F), apatit (P), barit (S), NaCl (Cl), wollastonit (Ca), V (V), rodonit (Mn, Si), fayalit (Fe), Cu (Cu), CaMoO₄ (Mo), GaAs (As), Sr-TiO₃ (Sr), CaWO₄ (W), PbCO₃ (Pb), Cr (Cr) a Ni (Ni). Obsahy meraných prvkov, ktoré nie sú uvedené v tabuľke, boli pod detekčným limitom prístroja (cca 0.03 - 0.05 hm. %). Získané údaje boli korigované pomocou softvéru PAP (Pouchou, Pichoir 1985).

V	oja				
h	k	1	d _{obs}	I _{obs}	d _{calc}
1	1	0	4.442	29	4.430
0	2	0	4.265	10	4.253
1	1	1	3.602	100	3.598
0	2	1	3.505	55	3.496
0	0	2	3.080	34	3.076
0	1	2	2.896	4	2.892
1	0	2	2.648	3	2.646
2	0	0	2.597	25	2.595
0	3	1	2.576	2	2.575
1	1	2	2.528	26	2.526
0	2	2	2.4938	13	2.4923
1	3	0	2.4938	32	2.4884
2	2	0	2.2161	12	2.2151
0	4	0	2.1276	2	2.1267
0	3	2	2.0854	26	2.0848
0	4	1	2.0106	11	2.0100
2	0	2	1.9838	11	1.9832
1	3	2	1.9349	22	1.9345
1	1	3	1.8611	23	1.8607
0	2	3	1.8473	11	1.8470
2	3	1	1.8278	<1	1.8278
2	2	2	1.7970	4	1.7974
0	4	2	1.7489	2	1.7492
3	1	0	1.6953	1	1.6951
2	4	0	1.6450	1	1.6448
0	5	1	1.6390	<1	1.6398
3	1	1	1.6341	5	1.6342
1	5	0	1.6160	1	1.6167
2	4	1	1.5885	5	1.5890
1	5	1	1.5631	6	1.5636
0	0	4	1.5375	2	1.5378
0	1	4	1.5124	<1	1.5132
2	2	3	1.5040	2	1.5047
3	1	2	1.4840	1	1.4845
3	3	0	1.4761	6	1.4767
1	1	4	1.4523	2	1.4527
2	4	2	1.4504	3	1.4504
0	2	4	1.4462	2	1.4462

Tabuľka 3 Röntgenové práškové údaje ceruzitu z Ča-

Charakteristika vybraných supergénnych fáz

Brianyoungit bol identifikovaný v haldovom materiáli šachty Ferdinand a šachty Geschenk. Tvorí nepravidelné až sférické kryštalické agregáty a kôry bielej farby s perleťovým leskom na plochách vzácne až 2 × 1 cm (obr. 2), ktoré sú zložené z jednotlivých tenkotabuľkovitých až lístkovitých kryštálov (obr. 3) do 100 µm. Kryštalické agregáty a kôry brianyoungitu vznikli v haldách recentne až subrecentne a sú viazané na povrch alebo pukliny žiloviny bohatej na sfalerit. V asociácii spolu s brianyoungitom sa vyskytuje aragonit a sadrovec.

Obr. 7 Detail prizmatických kryštálov mimetitu. SEM foto *M*. Števko.

Obr. 8 Nepravidelná chemická zonálnosť mimetitu. Tmavšie zóny sú obohatené o Ca. BSE foto M. Števko.

Tabuľka 4 Mriežkové parametre ceruzitu z Čavoja (indexované v rombickej priestorovej grupe Pmcn) a ich porovnanie s publikovanými údajmi

		a [Å]	b [Å]	c [Å]	V [ų]
Čavoj, SR	táto práca	5.189(1)	8.507(2)	6.152(1)	271.56(9)
synt.	Antao, Hassan (2009)	5.18324(2)	8.49920(3)	6.14746(3)	270.82
Příbram, ČR	Chevrier et al. (1992)	5.179(1)	8.492(3)	6.141(2)	270.08
Hodruša-Hámre, SR	Števko, Malíková (2014)	5.174(1)	8.478(2)	6.135(1)	269.1(1)
Valaská Belá, SR	Števko et al. (2008)	5.175(2)	8.486(2)	6.136(2)	269.5(1)
Jáchymov, ČR	Sejkora et al. (2011)	5.173(2)	8.487(2)	6.135(2)	269.3(2)

Röntgenové práškové údaje brianyoungitu z Čavoja (tab. 1) sú v dobrej zhode s údajmi publikovanými pre túto minerálnu fázu. Spresnené mriežkové parametre študovaného brianyoungitu sú v tabuľke 2 porovnané s publikovanými údajmi.

Ceruzit patrí k najrozšírenejším supergénnym minerálom na ložisku. Najčastejšie vytvára číre, biele až sivé idiomorfné tabuľkovité, prizmatické a ihlicovité kryštály alebo komplikované zrasty s veľkosťou do 5 mm (obr. 4) v dutinách a puklinách zvetranej a limonitizovanej kremeňovo-galenitovej žiloviny prípadne v puklinách okolitých hornín s impregnáciami galenitu. Časté sú aj niekoľko mm hrubé lemy ceruzitu okolo alterovaných agregátov a zŕn galenitu. V asociácii spolu s ceruzitom sa vyskytuje anglesit, pyromorfit a wulfenit (haldy šachty Ferdinand) alebo mimetit (Baniská).

Ceruzit bol identifikovaný pomocou práškovej rtg. difrakcie (tab. 3). Jeho spresnené mriežkové parametre sú v tabuľke 4 porovnané s publikovanými údajmi.

Hemimorfit bol zistený na haldách v okolí Striebornej štôlne. Tvorí max. 2 mm veľké biele polguľovité

Ч

agregáty (obr. 5) s radiálnou vnútornou stavbou, ktoré sa vyskytujú v dutinách a puklinách sulfidickej žiloviny bohatej na sfalerit. Povrch agregátov hemimorfitu pozostáva z jednotlivých tabuľkovitých kryštálov. Röntgenové práškové údaje hemimorfitu zo študovanej lokality (tab. 5) sú v dobrej zhode s údajmi publikovanými pre túto minerálnu fázu ako aj s teoretickým záznamom, ktorý bol vypočítaný zo štruktúrnych údajov, ktoré publikovali Takéuchi et al. (1978). Spresnené mriežkové parametre hemimorfitu z Čavoja sú v tabuľke 6 porovnané s publikovanými údajmi.

Mimetit bol zriedkavo identifikovaný vo vzorkách z háld banských prác v oblasti Banísk. Vytvára sýtožlté až žltozelené sférické až nepravidelné kryštalické agregáty do 2 mm (obr. 6), kôry alebo drúzy zložené z jednotlivých prizmatických kryštálov (obr. 7), ktorých veľkosť zriedkavo dosahuje až 1 mm. Mimetit sa vyskytuje v asociácii spolu s kryštalickými agregátmi sivobieleho ceruzitu v dutinách a puklinách limonitizovanej kremeňovej žiloviny s reliktami hrubokryštalického galenitu a zriedkavého arzenopyritu.

1

А

А

	Tabuľka 5	Röntgenové	práškové	údaje	hemimorfitu z	Cavoja
--	-----------	------------	----------	-------	---------------	--------

ı

Ч

	N	'	u _{obs}	obs	u _{calc}		N	'	U _{obs}	obs	Calc
1	1	0	6.579	82	6.592	4	2	0	1.9480	1	1.9476
0	2	0	5.346	67	5.355	4	1	1	1.9039	<1	1.9044
0	1	1	4.608	29	4.614	3	1	2	1.8558	2	1.8557
1	0	1	4.356	<1	4.363	0	4	2	1.8490	4	1.8491
2	0	0	4.177	37	4.182	3	4	1	1.8065	17	1.8066
1	2	1	3.381	1	3.382	0	6	0	1.7855	31	1.7851
2	2	0	3.293	26	3.296	4	3	1	1.7016	5	1.7014
1	3	0	3.282	78	3.284	2	4	2	1.6908	2	1.6912
2	1	1	3.098	100	3.099	0	1	3	1.6830	1	1.6833
0	3	1	2.926	<1	2.927	1	0	3	1.6708	1	1.6701
3	1	0	2.700	2	2.698	3	3	2	1.6665	8	1.6664
0	4	0	2.677	19	2.678	5	1	0	1.6530	5	1.6526
0	0	2	2.556	31	2.557	4	4	0	1.6477	5	1.6479
3	0	1	2.4466	26	2.4476	2	6	0	1.6417	4	1.6418
2	3	1	2.3969	50	2.3981	4	0	2	1.6189	3	1.6185
1	1	2	2.3831	4	2.3836	5	0	1	1.5897	3	1.5897
0	2	2	2.3069	2	2.3072	2	1	3	1.5620	8	1.5615
1	4	1	2.2814	2	2.2821	0	3	3	1.5385	3	1.5381
2	4	0	2.2547	3	2.2550	5	2	1	1.5241	3	1.5240
3	2	1	2.2257	11	2.2261	5	3	0	1.5148	21	1.5147
3	3	0	2.1967	21	2.1973	0	7	1	1.4667	3	1.4659
2	0	2	2.1806	11	2.1813	0	6	2	1.4635	7	1.4637
4	0	0	2.0907	7	2.0908	3	0	3	1.4542	4	1.5442
1	5	0	2.0752	2	2.0752	2	3	3	1.4437	9	1.4436
2	2	2	2.0198	5	2.0201	3	6	1	1.4427	10	1.4423
1	3	2	2.0171	6	2.0173	4	5	1	1.4362	1	1.4360
0	5	1	1.9755	2	1.9758						

hk

Tabuľka 6 Mriežkové parametre hemimorfitu z Čavoja (indexované v rombickej priestorovej grupe Imm2) a ich porovnanie s publikovanými údajmi

		a [Å]	b [Å]	c [Å]	V [ų]
Čavoj, SR	táto práca	8.3634(8)	10.711(1)	5.1134(5)	458.07(8)
Chihuahua, Mexiko	Takéuchi et al. (1978)	8.366(1)	10.714(1)	5.113(1)	458.3
Chihuahua, Mexiko	Hill et al. (1977)	8.367(5)	10.730(6)	5.115(3)	459.2
Valaská Belá, SR	Števko et al. (2008)	8.352(3)	10.697(4)	5.107(3)	456.3(3)

hkl

Mimetit bol potvrdený pomocou rtg. práškovej difrakcie (tab. 7), pričom získané difrakčné údaje sú v dobrej zhode s teoretickým práškovým záznamom, ktorý bol vypočítaný zo štruktúrnych dát, ktoré publikoval Okudera (2013). Jeho spresnené mriežkové parametre sú v tabuľke 8 porovnané s publikovanými údajmi.

h	k	1	d _{obs}	I _{obs}	d _{calc}	h	k	1	d _{obs}	I _{obs}	d _{calc}
0	1	0	8.807	<1	8.864	2	2	2	2.1059	9	2.1058
0	1	1	5.662	<1	5.686	2	3	0	2.0412	3	2.0336
1	1	0	5.089	2	5.118	1	2	3	1.9899	8	1.9886
0	2	0	4.421	12	4.432	2	3	1	1.9595	9	1.9612
1	1	1	4.191	18	4.212	1	4	0	1.9318	4	1.9344
0	2	1	3.788	1	3.804	0	4	2	1.9010	6	1.9020
0	0	2	3.708	5	3.706	0	3	3	1.8959	9	1.8955
0	1	2	3.420	11	3.419	0	0	4	1.8567	3	1.8531
1	2	0	3.343	18	3.350	0	5	0	1.7761	<1	1.7729
1	2	1	3.049	41	3.053	1	3	3	1.7422	1	1.7428
1	2	1	3.044	100	3.041	3	3	0	1.7089	2	1.7060
1	1	2	3.003	64	3.002	2	4	0	1.6800	1	1.6752
0	3	0	2.949	30	2.955	3	3	1	1.6676	1	1.6625
0	2	2	2.837	1	2.843	0	4	3	1.6548	2	1.6497
0	3	1	2.730	<1	2.745	2	4	1	1.6307	1	1.6340
2	2	0	2.542	<1	2.559	1	2	4	1.6205	2	1.6216
1	2	2	2.4801	1	2.4854	0	5	2	1.5981	1	1.5993
2	2	1	2.4116	<1	2.4189	1	5	0	1.5939	1	1.5921
1	3	1	2.3218	1	2.3335	2	3	3	1.5681	4	1.5702
0	3	2	2.3049	1	2.3104	3	3	2	1.5500	1	1.5497
0	4	0	2.2221	2	2.2161	2	2	4	1.5018	1	1.5009

Tabuľka 7 Röntgenové práškové údaje mimetitu z Čavoja

Tabuľka 8 Mriežkové parametre mimetitu z Čavoja (indexované v hexagonálnej priestorovej grupe P6₃/m) a ich porovnanie s publikovanými údajmi

		<i>a</i> [Å]	c [Å]	V [Å ³]
Čavoj, SR	táto práca	10.236(10)	7.4126(9)	673(1)
Pingtouling, Čína	Okudera (2013)	10.2382(14)	7.4502(12)	676.31
Durango, Mexiko	Dai et al. (1991)	10.212(2)	7.419(4)	669.9
Slivice, ČR	Sejkora et al. (2008)	10.2417(5)	7.4431(7)	676.12(7)
Jáchymov, ČR	Sejkora et al. (2011)	10.24(2)	7.4151(6)	673(1)
Krupka, ČR	Sejkora et al. (2009)	10.2395(6)	7.4380(8)	675.37(8)

Tabuľka 9 (Chemické	zloženie	mimetitu z	Čavoja	(hm.	%
-------------	----------	----------	------------	--------	------	---

			• • •				
	mean	1	2	3	4	5	6
CaO	0.78	0.63	0.85	0.87	1.19	0.83	0.31
PbO	74.27	74.08	73.68	73.88	74.32	74.43	75.27
As_2O_5	20.76	21.87	21.40	19.91	19.33	20.14	21.92
P_2O_5	1.04	0.57	0.61	1.43	1.80	1.51	0.34
CI	2.69	2.85	2.29	2.75	2.70	2.69	2.87
O=CI	0.61	0.64	0.52	0.62	0.61	0.61	0.65
total	99.10	99.50	98.48	98.47	98.87	99.12	100.15
Ca ²⁺	0.213	0.169	0.232	0.242	0.328	0.227	0.084
Pb ²⁺	5.111	5.021	5.082	5.133	5.160	5.091	5.175
Σ A-site	5.324	5.190	5.314	5.375	5.488	5.318	5.259
As ⁵⁺	2.774	2.879	2.867	2.687	2.607	2.676	2.927
P ⁵⁺	0.226	0.121	0.133	0.313	0.393	0.324	0.073
Σ T-site	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Cl	1.166	1.216	0.996	1.204	1.182	1.159	1.240

Obr. 9 Agregát svetlozelených kryštálov pyromorfitu, šírka obrázku je 4 mm. Foto P. Škácha.

Obr. 10 Zhluky a agregáty bieložltých prizmatických kryštálov pyromorfitu, šírka obrázku je 4 mm. Foto P. Škácha.

Tabl	ιικα	10 /	Congenove prask	love uuaje p	Syromorniu z Ca	voja					
h	k	Ι	d _{obs}	I _{obs}	d _{calc}	h	k	Ι	d _{obs}	I _{obs}	d _{calc}
0	1	0	8.773	<1	8.648	1	3	2	2.0092	12	2.0088
0	1	1	5.637	<1	5.602	2	3	0	1.9839	19	1.9840
1	1	0	5.014	8	4.993	1	2	3	1.9600	14	1.9609
0	2	0	4.340	29	4.324	2	3	1	1.9150	14	1.9155
1	1	1	4.146	41	4.131	1	4	0	1.8871	12	1.8872
0	2	1	3.738	2	3.727	0	4	2	1.8631	19	1.8636
0	0	2	3.685	7	3.676	0	0	4	1.8371	3	1.8382
0	1	2	3.390	23	3.383	2	3	2	1.7439	<1	1.7460
1	2	0	3.276	32	3.269	1	1	4	1.7252	1	1.7250
1	2	1	2.991	84	2.987	0	2	4	1.6905	1	1.6917
1	1	2	2.966	100	2.960	1	4	2	1.6785	2	1.6789
0	3	0	2.887	49	2.883	2	4	0	1.6338	3	1.6343
0	2	2	2.804	1	2.801	3	3	1	1.6229	2	1.6233
2	2	0	2.500	1	2.496	1	2	4	1.6016	4	1.6022
1	2	2	2.4436	2	2.4428	0	5	2	1.5637	2	1.5651
1	3	0	2.3990	1	2.3986	0	3	4	1.5501	7	1.5499
0	3	2	2.2710	4	2.2685	2	3	3	1.5423	5	1.5421
1	1	3	2.2025	8	2.2001	3	3	2	1.5162	10	1.5162
0	4	0	2.1619	<1	2.1620	2	4	2	1.4919	<1	1.4934
2	2	2	2.0658	23	2.0653	2	2	4	1.4789	<1	1.4802

Tabuľka 10 Röntgenové práškové údaje pyromorfitu z Čavoja

Chemické zloženie mimetitu z Čavoja (tab. 9) je blízke teoretickému krajnému členu. V katiónovej pozícii (tab. 9) boli okrem dominantného Pb zistené aj minoritné obsahy Ca (do 0.33 *apfu*), ktoré vyvolávajú jeho nevýraznú oscilačnú až nepravidelnú chemickú zonálnosť v BSE (obr. 8). V aniónovej pozícii sú charakteristické minoritné obsahy P (do 0.39 *apfu*). Empirický vzorec mimetitu z Čavoja (priemer 6 bodových analýz) je možné na bázu P+As+V+Si+S=3 *apfu* vyjadriť ako (Pb_{5.11}Ca_{0.21}) _{25.32} [(AsO₄)_{2.77}(PO₄)_{0.23}]_{25.00}Cl_{1.17}.

Pyromorfit sa vyskytuje relatívne vzácne na halde šachty Ferdinand v dutinách a puklinách zvetranej a limonitizovanej kremeňovo-galenitovej žiloviny alebo v puklinách okolitých hornín s impregnáciami a žilkami galenitu. Vytvára svetlozelené až bieložlté kôry, kryštalické agregáty a drúzy (obr. 9), ktoré pozostávajú z izolovaných hexagonálnych prizmatických kryštálov (obr. 10) s veľkosťou do 2 mm. Vyskytuje v asociácii spolu s ceruzitom a wulfenitom.

Röntgenové práškové údaje pyromorfitu z Čavoja (tab. 10) sú v dobrej zhode s údajmi publikovanými pre túto minerálnu fázu. Spresnené mriežkové parametre študovaného pyromorfitu sú v tabuľke 11 porovnané s publikovanými údajmi.

V katiónovej pozícii študovaného pyromorfitu z Čavoja (tab. 12) boli okrem Pb zistené aj minoritné obsahy Ca (do 0.19 *apfu*), ktoré spôsobujú jeho oscilačnú zonálnosť v BSE (obr. 11, 14). V aniónovej pozícii sú charak-

Tabuľka 11 Mriežkové parametre pyromorfitu z Čavoja (indexované v hexagonálnej priestorovej grupe P6₃/m) a ich porovnanie s publikovanými údajmi

		<i>a</i> [Å]	c [Å]	V [ų]
Čavoj, SR	táto práca	9.986(8)	7.3528(3)	635.0(5)
Daoping, Čína	Okudera (2013)	9.9791(14)	7.3439(11)	633.34
Jáchymov, ČR	Sejkora et al. (2011)	10.061(1)	7.381(1)	647.0(1)
Medvědín, ČR	Plášil et al. (2009)	10.051(3)	7.373(2)	645.1(1)
Valaská Belá, SR	Števko et al. (2008)	9.986(2)	7.353(2)	635.1(3)
Slivice, ČR	Sejkora et al. (2008)	9.9608(5)	7.3112(7)	628.21(7)

Tabuľka 12 Chemické zloženie pyromorfitu z Čavoja (hm. %)

	mean	1	2	3	4	5	6	7	8	9
CaO	0.40	0.34	0.42	0.49	0.30	0.75	0.12	0.65	0.39	0.18
PbO	80.54	80.92	80.91	80.78	79.53	79.45	82.08	78.41	81.39	81.43
As_2O_5	0.40	0.36	0.36	0.29	0.27	0.45	0.51	0.37	0.37	0.59
P_2O_5	15.20	15.32	15.10	15.20	15.12	15.10	15.51	15.06	15.33	15.08
CI	2.96	2.75	2.81	2.66	2.99	3.09	3.26	3.03	2.84	3.27
O=CI	0.67	0.62	0.63	0.60	0.67	0.70	0.73	0.68	0.64	0.74
total	98.95	99.17	98.96	98.83	97.70	98.30	100.75	97.21	99.69	99.90
Ca ²⁺	0.100	0.084	0.104	0.120	0.075	0.185	0.028	0.161	0.096	0.044
Pb ²⁺	4.974	4.967	5.039	5.013	4.961	4.927	4.948	4.891	4.991	5.030
Σ A-site	5.074	5.051	5.143	5.133	5.036	5.112	4.976	5.051	5.087	5.075
As ⁵⁺	0.047	0.042	0.043	0.034	0.034	0.055	0.060	0.045	0.044	0.071
P ⁵⁺	2.953	2.958	2.957	2.966	2.966	2.945	2.940	2.955	2.956	2.929
Σ T-site	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Cl	1.153	1.063	1.101	1.038	1.173	1.205	1.235	1.190	1.096	1.272

Obr. 11 Oscilačná chemická zonálnosť pyromorfitu z Čavoja. BSE foto M. Števko.

Obr. 12 Oranžový dipyramidálny kryštál wulfenitu v asociácii s bieložltým pyromorfitom, šírka obrázku je 2.5 mm. Foto P. Škácha.

Obr. 13 Detail na dipyramidálny kryštál wulfenitu narastený na pyromorfite. SEM foto M. Števko.

Obr. 14 Nevýrazne chemicky zonálny kryštál wulfenitu (tmavý) narastený na zonálnom agregáte pyromorfitu (svetlý). BSE foto M. Števko.

teristické minoritné obsahy As (do 0.07 *apfu*). Empirický vzorec pyromorfitu z Čavoja (priemer 9 bodových analýz) je možné na bázu P+As+V+Si+S=3 *apfu* vyjadriť ako (Pb_{4.97}Ca_{0.10})_{Σ5.07}[(PO₄)_{2.95}(AsO₄)_{0.05}]_{Σ3.00}Cl_{1.15}. **Wulfenit** bol vzácne zistený na halde šachty Ferdi-

Wulfenit bol vzácne zistený na halde šachty Ferdinand v dutinách a puklinách zvetranej a limonitizovanej kremeňovo-galenitovej žiloviny alebo v puklinách okolitých hornín s impregnáciami a žilkami galenitu. Vytvára oranžové dipyramidálne, často obojstranne ukončené kryštály s veľkosťou do 1 mm (obr. 12, 13), ktoré narastajú na kryštalické agregáty pyromorfitu alebo sa vyskytujú v ich tesnej blízkosti spolu s ceruzitom.

Röntgenové práškové údaje wulfenitu z Čavoja (tab. 13) sú v dobrej zhode s teoretickým práškovým záznamom vypočítaným z údajov o kryštálovej štruktúre wulfenitu, ktoré publikovali Lugli et al. (1999). Spresnené mriežkové parametre študovaného wulfenitu sú v tabuľke 14 porovnané s publikovanými údajmi.

Chemické zloženie wulfenitu z Čavoja (tab. 15) je blízke teoretickému PbMoO₄. V aniónovej pozícii študovaného wulfenitu boli zistené iba minoritné obsahy P a As (v oboch prípadoch do 0.01 *apfu*), ktoré v BSE vyvolávajú jeho nevýraznú chemickú zonálnosť (obr. 14). Empirický vzorec wulfenitu z Čavoja (priemer 5 bodových analýz) je možné na bázu Mo+W+As+P=1 *apfu* vyjadriť ako Pb_{1.00}[(MoO₄)_{0.98}(AsO₄)_{0.01}[PO₄)_{0.01}J_{21.00}.

Tabuľka 13 Röntgenové práškové údaje wulfenitu zČavoja

h	k	Ι	d _{obs}	I _{obs}	d _{calc}
0	1	1	4.955	12	4.958
1	0	3	3.242	100	3.240
0	0	4	3.027	26	3.027
0	2	0	2.716	23	2.717
0	2	2	2.4776	<1	2.4790
1	2	1	2.3819	7	2.3829
0	1	5	2.2113	4	2.2117
1	2	3	2.0812	5	2.0820
0	2	4	2.0223	28	2.0220
2	2	0	1.9207	11	1.9215
0	3	1	1.7907	3	1.7916
1	1	6	1.7857	20	1.7864
2	1	5	1.7152	1	1.7153
1	3	2	1.6533	21	1.6533
2	2	4	1.6217	9	1.6222
0	0	8	1.5137	2	1.5133
3	1	4	1.4948	1	1.4945
3	0	5	1.4508	<1	1.4505

		a [Å]	c [Å]	V [Å ³]
Čavoj, SR	táto práca	5.435(1)	12.1065(2)	357.59(9)
Monte Cengio, I	Lugli et al. (1999)	5.434(1)	12.107(1)	357.5
Valle der Cervo, I	Secco et al. (2008)	5.433(1)	12.098(1)	357.1(1)
Valaská Belá, SR	Števko et al. (2008)	5.432(1)	12.110(3)	357.4(2)
Jáchymov, ČR	Sejkora et al. (2011)	5.421(4)	12.12(2)	356.2(8)

Tabuľka 14 Mriežkové parametre wulfenitu z Čavoja (indexované v tetragonálnej priestorovej grupe I4,/a) a ich porovnanie s publikovanými údajmi

Záver

Na polymetalickom ložisku Čavoj bola zistená asociácia supergénnych minerálov reprezentovaná anglesitom, aragonitom, brianyoungitom, ceruzitom, hemimorfitom, malachitom, mimetitom, pyromorfitom, sadrovcom a wulfenitom, ktorá na tomto ložisku doteraz nebola známa. V prípade brianyoungitu ide o prvý výskyt tohto minerálu na území Slovenskej republiky. Na základe minerálneho zloženia a podmienok vzniku je možné na ložisku Čavoj vyčleniť dva typy supergénnej mineralizácie: a) supergénne fázy, ktoré vznikli *in-situ* dekompozíciou primárnej rudnej mineralizácie v supergénnej zóne ložiska (anglesit, ceruzit, hemimorfit, malachit, mimetit, pyromorfit a wulfenit), b) supergénne minerály, ktoré predstavujú produkt sub-recentnej dekompozície úlomkov rudniny deponovaných na haldách (aragonit, brianyoungit a sadrovec).

Poďakovanie

Milou povinnosťou autorov je poďakovať Petrovi Cagáňovi za spoluprácu pri terénnom výskume na lokalite a Pavlovi Škáchovi za vyhotovenie fotografií minerálov. Táto práca bola podporovaná Agentúrou na podporu výskumu a vývoja na základe zmluvy č. APVV-0375-12 a vznikla za finančnej podpory Ministerstva kultúry ČR v rámci inštitucionálneho financovania dlhodobého koncepčného rozvoja výskumnej organizácie Národní muzeum (DKRVO 2015/01, 00023272).

Literatúra

- Antao S. M., Hassan I. (2009) The orthorombic structure of CaCO₃, SrCO₃, PbCO₃ and BaCO₃: linear structural trends. *Can. Mineral.* 47, 1245-1255.
- Čík Š., Petrík I. (2012) Asociácia biotit-granát-sillimanit v granitoch S-typu: *P-T* podmienky kryštalizácie granitov Malej Magury, bratislavského masívu a Považského Inovca (Slovenská republika). *Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 2, 197-207.*
- Dai Y., Hughes J. M., Moore P. B. (1991) The crystal structures of mimetite and clinomimetite, Pb₅(AsO₄)₃CI. *Can. Mineral.* 29, 369-376.
- Dyda M. (1990) Metamorphic processes in paragneisses from the Suchý and Malá Magura Mts. (The Western Carpathians). Geol. Zbor. Geol. carpath. 41, 315-334.
- Hill R. J., Gibbs G. V., Craig J. R., Ross F. K., Williams J. M. (1977) A neutron diffraction study of hemimorphite. *Zeit. Kristall.* 146, 241-259.
- Holec G. (1968) Správa o literárno-historickom výskume rudného baníctva na Hornej Nitre. MS, ŠGÚDŠ-Geofond, Bratislava, 1-47, i. č. 67236.
- Hovorka D., Fejdi P. (1983) Garnets of peraluminous granites of the Suchý and Malá Magura Mts. (the Western Carpathians) - their origin and petrological significance. *Geol. Zbor. Geol. carpath.* 34, 103-115.

Tabuľka	ı 15	Chemické	zloženie	wulfenitu	z Čavoja
(hm	%)				

(1111.	/0/					
	mean	1	2	3	4	5
PbO	60.78	60.73	60.74	60.83	60.82	60.80
P ₂ O ₅	0.22	0.22	0.24	0.20	0.22	0.23
As_2O_5	0.18	0.17	0.20	0.22	0.18	0.13
MoO_3	38.61	38.70	38.58	38.54	38.66	38.55
total	99.79	99.82	99.77	99.80	99.89	99.70
Pb ²⁺	0.998	0.995	0.996	1.000	0.997	1.001
Σ A-site	0.998	0.995	0.996	1.000	0.997	1.001
P ⁵⁺	0.011	0.011	0.012	0.010	0.012	0.012
As ⁵⁺	0.006	0.005	0.007	0.007	0.004	0.004
Mo ⁶⁺	0.983	0.984	0.981	0.983	0.984	0.984
Σ X-site	1.000	1.000	1.000	1.000	1.000	1.000

- Chevrier G., Giester G., Heger G., Jarosch D., Wildner M., Zemann J. (1992) Neutron single-crystal refinement of cerussite, PbCO₃, and comparison with other aragonite-type carbonates. *Zeit. Kristall.* 199, 67-74.
- Jonas J. (1820) Ungerns Mineralreich orycto-geognostich und topographisch dargestellt. 1-414, Hartleben's Verlag, Pesth.
- Kahan Š. (1980) Strukturelle und metamorphe Charakteristik des Kristallins des Gebirges Strážovské Vrchy (Suchý and Malá Magura). Geol. Zbor. Geol. carpath. 31, 576-601.
- Kantor M., Ďurkovičová J. (1977) lzotopy síry na barytových ložiskách Západných Karpát-čiastková záverečná správa. MS, ŠGÚDŠ-Geofond, Bratislava, 1-237, i. č. 41417.
- Kozlovský M., Matherny M. (1960) Poznámky ku kryštalografii smithsonitu z Ochtinej. *Acta geol. geogr. Univ. Comen,, Geol. č. 4, 31-40.*
- Laugier J., Bochu B. (2011) LMGP-Suite of Programs for the Interpretation of X-ray Experiments. *http://www. ccp14.ac.uk/tutorial/Imgp*.
- Livingstone A., Champness P. E. (1993) Brianyoungite, a new mineral related to hydrozincite, from the north of England orefield. *Mineral. Mag.* 57, 665-670.

- Lugli C., Medici N., Saccardo D. (1999) Natural wulfenite: structural refinement by single-crystal X-ray diffraction. *N. Jb. Miner. Monat. 6, 281-288.*
- Luptáková J., Chovan M. (2003) Sekundárne minerály Pb-Zn ložiska Jasenie-Soviansko v Nízkych Tatrách. *Miner. Slov. 35, 141-146*.
- Maheľ M. (1983) Vysvetlivky ku geologickej mape Strážovských vrchov v mierke 1:50 000. ŠGÚDŠ, Bratislava, 1-89.
- Maheľ M. (1985) Geologická stavba Strážovských vrchov. 1-221, ŠGÚDŠ, Bratislava.
- Mikoláš S., Komora J., Kandera K., Sandanus M., Šlepecký T., Januš J., Staňa Š., Očenáš D., Stupák J. (1995) Čavoj-Gápel-Ag, Pb, Zn rudy-vyhľadávací prieskum, stav k 31.3.1995. MS, ŠGÚDŠ-Geofond, Bratislava, 1-114, i. č. 82971.
- Mikuš T., Chovan M., Pršek J., Šlepecký T. (2003) Hydrothermal siderite-basemetals vein mineralization in the vicinity of Čavoj, Suchý Mts. *Slovak Geol. Mag. 9*, *4*, 207-216.
- Mrázek Z., Ďuďa R. (1983) Sekundárne minerály oloveno-zinkového ložiska Mária-Margita v Ochtinej. *Miner. Slov.* 15, 129-140.
- Okudera H. (2013) Relationships among channel topology and atomic displacements in the structures of $Pb_5(BO_4)_3CI$ with B = P (pyromorphite), V (vanadinite), and As (mimetite). *Am. Mineral.* 98, 1573-1579.
- Ozdín D., Uher P., Sliva Ľ., Orvošová M., Fejdi P., Šamajová E. (2001) Hemimorfit Zn₄Si₂O₇(OH)₂·H₂O z jaskyne Zlomísk v Nízkych Tatrách. *Miner. Slov.* 33, 61-64.
- Pauliš P. (1977) Dnešní stav některých nalezišť nerostů na Slovensku. Čas. Mineral. Geol. 22, 207-208.
- Pouchou J. L., Pichoir F. (1985) "PAP" (φρZ) procedure for improved quantitative microanalysis. *In: Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San Francisco, 104-106.*
- Plášil J., Sejkora J., Čejka J., Škácha P, Goliáš V. (2009) Supergene mineralization of the Medvědín uranium deposit, Krkonoše Mountains, Czech Republic. J. Geosci. 54, 15-56.
- Putiš M. (1982) Bemerkungen zu dem Kristallin in dem Bereich des Považský Inovec, Suchý und Kráľová hoľa. Geol. Zbor. Geol. carpath. 33, 191-196.
- Repčok I., Ferenčíková E., Eliáš K., Rúčka I., Kovářová A., Sládková M., Wiegerová V. (1993) Izotopový a termometrický výskum Pb-Zn zrudnenia v okolí Čavoja. *Miner. Slov. 25, 362-364.*
- Rieder M., Povondra P. (1961) Study of some supergene minerals from Poniky near Banská Bystrica, Slovakia. *Acta Univ. Carol. Geol. č. 3, 147-162.*
- Secco L., Nestola .F, Dal Negro A. (2008) The wulfenite -stolzite series: centric or acentric structures? *Mineral. Mag.* 72, 987-900.
- Sejkora J., Litochleb J., Strnad J., Kubica J. (2008) Supergenní mineralizace slivického pásma (žíla Karel) jv. od Příbrami, Česká republika. *Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 16, 1-10.*
- Sejkora J., Plášil J., Císařová I., Škoda R., Hloušek J., Veselovský F., Jebavá I. (2011) Interesting supergene Pb-rich mineral association from the Rovnost mining field, Jáchymov (St. Joachimsthal), Czech Republic. J. Geosci. 56, 257-271.

- Sejkora J., Škovíra J., Čejka J., Plášil J. (2009) Cu-rich members of the beudantite-segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic. J. Geosci. 54, 355-371.
- Schmidt S. (1877) Cerussit Selmeczről. Term. Füz. 1, 177-179.
- Schmidt S. (1884) Pelsöcz-Ardó ásványairól. *Term. Füz.* 8, 84-92.
- Schmidt S. (1885) Ueber die Minerale von Pelsöcz-Ardó. Z. Krist. 10, 202-210.
- Šlepecký T., Sandanus M., Krištín J. (1992) Oloveno-zinková-strieborná mineralizácia v oblasti Čavoj-Gápeľ v kryštaliniku Suchého. In: Stříbrné minerální asociace v Československu. Donovaly-DT Ustí nad Labem, ČSVTS, 149-157.
- Števko M., Bačík P., Ozdín D. (2010) Nové výsledky štúdia sekundárnych minerálov na hydrotermálnych ložiskách v Slovenskej republike pomocou práškovej rtg. difrakcie. *Miner. Slov. 40, Geovestník, 253*.
- Števko M., Bálintová T. (2008) Nové nálezy sekundárnych minerálov na polymetalickom ložisku Mária-Margita pri Ochtinej. *Minerál 3, 244-248.*
- Števko M., Malíková R. (2014) Supergénne minerály zo štôlne Juraj, Hodruša-Hámre (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 22, 261-268.
- Števko M., Ozdín D. (2012) Supergénne striebro a akantit z polymetalického ložiska Jasenie-Soviansko v Nízkych Tatrách (Slovenská republika). Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 20, 47-51.
- Števko M., Ozdín D., Bačík P., Pršek J., Gramblička R. (2008) Sekundárne minerály z polymetalickej mineralizácie pri Valaskej Belej, Slovenská republika. *Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha), 16, 177-184.*
- Takéuchi Y., Sasaki S., Joswig W., Fuess H. (1978) X-ray and neutron diffraction study of hemimorphite. *Proc. Japan Acad.* 54, 577-582.
- Tokody L. (1926) Kristallographische Monographie der ungarischen Cerussite. Z. Krist. 63, 385-456.
- Tóth M. (1882) Magyarország ásványai különös tekintettel termőhelyeik megállapítására. 1-509, Hunyadi Mátyás, Budapest.
- Vilinovičová Ľ. (1990) Petrogenesis of gneisses and granitoids from the Strážovské vrchy Mts. Geol. Zbor. Geol. carpath. 41, 335-376.
- Zepharovich V. (1859) Mineralogisches Lexicon für das Kaiserthum Österreich. Band I. *1-627, Wilhelm Braumüller, Wien*.
- Zepharovich V. (1873) Mineralogisches Lexicon für das Kaiserthum Österreich. Band II. *1-436, Wilhelm Braumüller, Wien*.
- Zipser Ch. A. (1817) Versuch eines topograhisch-mineralogischen Handbuches von Ungern. 1-440, Carl Friedrich Wigand, Oedenburg.