Úvod

Žíly příbramského uran-polymetalického revíru (dále příbramský uranový revír) se povětšinou vyskytují v exokontaktu hornin středočeského plutonického komplexu s vulkanosedimentárními horninami Barrandienu. Pro srážení minerálů čtyřmocného uranu nejsou v granitoidních horninách v oblasti Českého masivu obecně vhodné podmínky, což platí zvláště pro větší česká ložiska uranových rud. Také v příbramském uranovém revíru se na uran nejbohatší žíly vyskytovaly většinou ve vulkanosedimentárních horninách a při přechodu žil do granitoidů došlo často k rychlé ztrátě uranové mineralizace. Nicméně byly zjištěny některé výjimky, kdy se vyskytovalo uranové zrudnění až do vzdálenosti několika set metrů od kontaktu (anonym 1972). Na ložisku Bytíz to byly četné žíly žilného uzlu Bt40, kde bylo zrudnění sledováno až do vzdálenosti 200 m od kontaktu, zatímco na nejdůležitějších žílách revíru Bt4 a Bt4H bylo zjištěno v granitoidech naprosté vymizení zrudnění. Na 17. patře ložiska Lešetice byla zjištěna podobná distribuce zrudnění jako na žile Hofman ve Vrančicích, kde se čočkovitá tělesa smolince vyskytovala na křížení žil se sj. strukturami. Protože lešetické žíly pravděpodobně odpovídají žilám těženým na ložisku Vrančice, kde byly na úrovni 7. a 10. patra zjištěny čočky uraninitu (žíla Hofman), bylo rozhodnuto o prozkoumání úseku mezi těmito obcemi milín. Kromě uranových rud byl důraz kladen i na výskyt rud polymetalických (Paška, Králík 1978), které se často vyskytovaly a byly historicky těženy, jak na žile Pošepný ve Vrančicích, tak i na nověji ověřené žíle L1 v Lešeticích, která je pravděpodobně severním pokračováním žíly Pošepný (Řídkošil et al. 1992). Protože lešetické žíly pravděpodobně odpovídají žilám těženým na ložisku Vrančice, kde byly na úrovni 7. a 10. patra zjištěny čočky uraninitu (žíla Hofman), bylo rozhodnuto o prozkoumání úseku mezi těmito tomitou lešetického zrudnění jako na žile Hofman ve Vrančicích, kde se čočkovitá tělesa smolince vyskytovala na křížení žil se sj. strukturami. Protože lešetické žíly pravděpodobně odpovídají žilám těženým na ložisku Vrančice, kde byly na úrovni 7. a 10. patra zjištěny čočky uraninitu (žíla Hofman), bylo rozhodnuto o prozkoumání úseku mezi těmito obcemi milín.

Abstract

The small deposit Milín (uranium and base-metal ore district Příbram, Czech Republic) is situated in the northern continuation of the Vrančice deposit, well known by occurrences of Ag-Cu mineralization. One newly examined specimen from the dump of the shaft No. 68 provided new information about the Ag-Cu mineralization in the area of Milín deposit. Ag-rich bornite (up to 1.07 wt.%) and chalcopyrite are the oldest ore minerals of the association. A well-developed SbAs₁₋₋₁ substitution with prevailing tetrahedrite over tennantite is typical of minerals of the tetrahedrite group. Mckinstryite forms lath-like inclusions in stromeyerite aggregates. Both minerals belong at least in part to the youngest hypogene minerals of the studied ore association. Covellite replaces tetrahedrite and tennantite and is probably the youngest ore mineral. Calcite and quartz follow the crystallization of ore minerals. The occurrences of Ag-Cu mineralization which are typical for some veins of the Lešetice, Vrančice, Radětice and Milín deposits are probably lithologically controlled; the wall-rocks of all these occurrences are granitoids of the Central Bohemian Plutonic Complex.

Key words: mckinstryite, stromeyerite, tetrahedrite, tennantite, Milín deposit, uranium and base-metal ore district Příbram, Czech Republic

Obdrženo 30. 9. 2019; přijato 25. 11. 2019

Cu-Ag-Sb-As mineralizace z ložiska Milín, příbramský uran-polymetalický revír (Česká republika)

Cu-Ag-Sb-As mineralization from the Milín deposit, uranium and base-metal ore district Příbram (Czech Republic)

Pavel Škácha (1), Jiří Sejkora (1), Zdeněk Dolníček (1)

1) Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9; e-mail: skachap@seznam.cz
2) Hornícké muzeum Příbram, nám. Hynka Klíčky 293, Příbram VI, 261 01

Mckinstryit a stromeyerit jsou již delší dobu známy ze žíly Pošepný ve Vrančicích, kde byl zjištěn i další chemicky podobný minerál jalpait (Šulcová, Kašpar 1986). Zde se tyto minerály vyskytly v asociaci s covellinem, tetraedritem a bornitem. Obdobná Cu-Ag mineralizace s výskyty ryzího stříbra, argentitu, bornitu, stromeyeritu, bouronitu, pyrargyritu, chalkopyritu a tetraedritu byla popsána z tzv. Stěžovského pásma mezi obcemi Radětice a Milín (Langrová et al. 1983). Zde byly tyto minerály zjištěny na žile S-1, která byla hornickým zkoumána až do hloubky 440 m. Také toto ložisko je situované v horninách středočeského plutonického komplexu, převážně v granitoidech okrajového typu.

Charakteristika výskytu

Obr. 1 Bílé agregáty mckinstryitu jsou uzavřené ve světle šedých zmech stromeyeritu, oba minerály zatlačují zonální agregáty minerálů skupiny tetraedritu (různé odstíny tmavě šedé), nejtmavší je chalkopyrit; šířka záběru 1.2 mm, BSE foto J. Sejkora.

Obr. 2 Graf obsahů Ag vs. Cu (apfu) pro mckinstryit.

Obr. 3 Nejsvětlejší stromeyerit srůstá s tmavším mckinstryitem; obě fáze zarůstají do chalkopyritu (tak říká černý), šířka záběru 400 μm, BSE foto J. Sejkora.
případně goethit. Baryt byl zjištěn velmi vzácně na žilách Mi-17 a Mi-4. Sulfidy byly nalezeny velmi nepravidelně ve stopovém množství na sedmi žilách (Mi-2, Mi-3, Mi-8, Mi-9, Mi-13, Mi-16 a Mi-19); pouze na žile Mi-7 bylo možné vymeziť dva úseky s průběžným i když nepravidelným a nebilančním zrůzněním. Bylo vyčleněno pět hlavních minerálních stádů od nejstarších k nejmladším: sideritové, křemen-spekularitové, polymetalické, pyrit-karbonatové a hematit-goethitové stádio.

Studovaný vzorek byl odebrán J. Litochleblem ze šacht č. 68, pravděpodobně z haldy, a dnes je uložený ve sbírce Hornického muzea Příbram. Je nezbytné zmínit, že výskyt Cu-Ag mineralizace nebyl v průběhu průzkumných prací na polymetalické suroviny na šachtě č. 68 zjištěn, i přes provedené spektrální analýzy z některých žil na ložisku. Vzhledem k malým velikostem znám a zřejmě omezené velikosti výskytu ušel tento typ mineralizace pozornosti.

Tabulka 1 Chemické složení mckinstrytu (hm. %)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>60.95</td>
<td>59.86</td>
<td>59.64</td>
<td>61.95</td>
<td>60.52</td>
<td>59.37</td>
<td>58.72</td>
<td>60.65</td>
<td>61.82</td>
<td>60.90</td>
<td>62.05</td>
<td>61.51</td>
<td>61.14</td>
<td>59.54</td>
</tr>
<tr>
<td>Fe</td>
<td>0.22</td>
<td>0.41</td>
<td>0.75</td>
<td>0.69</td>
<td>0.43</td>
<td>1.67</td>
<td>0.10</td>
<td>0.12</td>
<td>0.15</td>
<td>0.30</td>
<td>0.00</td>
<td>0.49</td>
<td>0.42</td>
<td>0.16</td>
</tr>
<tr>
<td>Pb</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Zn</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.18</td>
<td>0.14</td>
<td>0.06</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Hg</td>
<td>0.06</td>
<td>0.08</td>
<td>0.13</td>
<td>0.10</td>
<td>0.13</td>
<td>0.10</td>
<td>0.20</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>0.07</td>
<td>0.11</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>As</td>
<td>0.01</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Te</td>
<td>0.07</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td>0.00</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>S</td>
<td>14.98</td>
<td>14.85</td>
<td>15.54</td>
<td>15.17</td>
<td>15.00</td>
<td>15.95</td>
<td>15.23</td>
<td>14.80</td>
<td>15.04</td>
<td>14.99</td>
<td>14.73</td>
<td>14.88</td>
<td>15.20</td>
<td>15.11</td>
</tr>
<tr>
<td>Cl</td>
<td>0.06</td>
<td>0.06</td>
<td>0.10</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.00</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.00</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Tabulka 2 Chemické složení stromeyeritu (hm. %)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>53.30</td>
<td>52.90</td>
<td>54.40</td>
<td>54.91</td>
<td>53.46</td>
<td>52.02</td>
<td>53.16</td>
<td>52.96</td>
<td>53.22</td>
<td>53.20</td>
<td>52.89</td>
<td>53.69</td>
<td>53.14</td>
<td>53.25</td>
<td>53.82</td>
</tr>
<tr>
<td>Fe</td>
<td>0.21</td>
<td>0.59</td>
<td>0.73</td>
<td>0.95</td>
<td>0.97</td>
<td>1.48</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Pb</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.10</td>
<td>0.00</td>
<td>0.15</td>
<td>0.00</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>Zn</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Hg</td>
<td>0.06</td>
<td>0.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.06</td>
<td>0.06</td>
<td>0.09</td>
<td>0.15</td>
<td>0.21</td>
<td>0.07</td>
<td>0.09</td>
<td>0.12</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>31.49</td>
<td>31.86</td>
<td>30.47</td>
<td>30.43</td>
<td>31.08</td>
<td>31.46</td>
<td>31.59</td>
<td>31.43</td>
<td>31.18</td>
<td>31.54</td>
<td>31.70</td>
<td>31.74</td>
<td>31.85</td>
<td>31.67</td>
<td>31.78</td>
</tr>
<tr>
<td>As</td>
<td>0.00</td>
</tr>
<tr>
<td>Te</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>15.60</td>
<td>15.83</td>
<td>15.67</td>
<td>15.56</td>
<td>15.42</td>
<td>15.52</td>
<td>15.65</td>
<td>15.50</td>
<td>15.36</td>
<td>15.55</td>
<td>15.62</td>
<td>15.52</td>
<td>15.61</td>
<td>15.76</td>
<td>15.41</td>
</tr>
<tr>
<td>Cl</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Průměr 30 bodových analýz, 1 - 14 vybrané bodové analýzy; báze přepočtu 3 apfu.
Metodika výzkumu

Povrchová morfologie vzorků byla sledována v dopadajícím světle pomocí optického mikroskopu Nikon SMZ 1000 (Národní muzeum Praha); tento mikroskop byl použit také pro separaci jednotlivých fází pro další výzkum. Nábrousy studovaných vzorků byly pro výzkum v odraženém světle a následné chemické analýzy připraveny standardním leštěním pomocí diamantové suspenze. Optické vlastnosti v odraženém světle byly studovány pomocí mikroskopu Nikon Eclipse ME600 s digitální kamерou Nikon DXM1200F.

Chemické složení rýzích kovů a sulfidů bylo kvantitativně studováno pomocí elektronového mikroanalyzátoru Cameca SX100 (Národní muzeum, Praha, analýtik Jiří Sejkora) za podmínek: vlnově disperzní analýza, napětí 25 kV, proud 5 nA, průměr svazku 4 μm, standardy a použité analytické čáry: CuFeS₂ (SKα, CuKα), Ag (AgLα), Bi₂Se₃ (BiMβ), CdTe (CdLα), FeS₂ (FeKα), HgTe (HgKα), NiAs (AsLβ), PbS (PbMa), PbSe (SeLβ), Sb₂S₃ (SbLα), ZnS (ZnKα), Mn (MnKα), Au (AuKα), PbTe (TeLα), Sn (SnLα), NaCl (ClKα), Ge (GeLα) a GaAs (GaLα). Obsahy výše uvedených prvků, které nejsou zahrnuty v tabulkách, byly kvantitativně analýzovány, ale zjištěné obsahy byly pod detekčním limitem (cca 0.03 - 0.05 % pro jednotlivé prvky). Získaná data byla korigována za použití software PAP (Pouchou, Pichoir 1985).

Charakteristika mineralizace

Studovaný vzorek o velikosti 7 × 7 cm je tvořen 4 cm mocnou rudní výplní, po stranách s šedozelenou okoložilnou horninou, která je hematitizovaná a hydrotermálně alterovaná. Makroskopickým studiem vzorku bylo zjištěno, že nejstarší v rudní výplni jsou až 2 × 1 cm velké agregáty sulfidů, nejmladší jsou narůžovělé srůsty stromeyeritu a mckinstryitu v zrnech a žilkách pronikajících oběma minerály; šířka záběru 900 μm, BSE foto J. Sejkora.

Obr. 4 Tmavý chalkopyrit zatlačuje světlejší převládající bornit; nejsvětlejší jsou srůsty stromeyeritu a mckinstryitu v zrnech a žilkách pronikajících oběma minerály; šířka záběru 900 μm, BSE foto J. Sejkora.

Obr. 5 Silně zonální minerály skupiny tetraedritu uzavírají nejsvětlejší srůsty stromeyeritu a mckinstryitu; místy tyto Ag-minerály pronikají v tenkých žilkách tetraedrit; šířka záběru 1 mm, BSE foto J. Sejkora.

Obr. 6 Graf obsahů Sb vs. As (apfu) v minerálech skupiny tetraedritu z Milína.
Tabulka 3 Chemické složení bornitu a chalcopyrtu (hm. %)

<table>
<thead>
<tr>
<th></th>
<th>bornit</th>
<th>chalcopyrt</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>0.77</td>
<td>0.08</td>
</tr>
<tr>
<td>Fe</td>
<td>10.98</td>
<td>10.80</td>
</tr>
<tr>
<td>Pb</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>Hg</td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>Cu</td>
<td>62.93</td>
<td>63.12</td>
</tr>
<tr>
<td>S</td>
<td>25.73</td>
<td>25.76</td>
</tr>
<tr>
<td>total</td>
<td>100.49</td>
<td>100.77</td>
</tr>
</tbody>
</table>

mean - průměr z 11 a 24 bodových analýz, báze přepočtu 10 (1 - 7 bornit) a 4 (8 - 12 chalcopyrt) apfu.

Tabulka 4 Chemické složení tennantitu (hm. %)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>0.25</td>
<td>0.12</td>
</tr>
<tr>
<td>Fe</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>Pb</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Cd</td>
<td>0.18</td>
<td>0.21</td>
</tr>
<tr>
<td>Co</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Ga</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>Zn</td>
<td>7.96</td>
<td>7.99</td>
</tr>
<tr>
<td>Hg</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Cu</td>
<td>42.92</td>
<td>42.77</td>
</tr>
<tr>
<td>Sb</td>
<td>3.18</td>
<td>4.08</td>
</tr>
<tr>
<td>As</td>
<td>17.98</td>
<td>16.73</td>
</tr>
<tr>
<td>S</td>
<td>27.87</td>
<td>27.58</td>
</tr>
<tr>
<td>total</td>
<td>100.78</td>
<td>100.27</td>
</tr>
</tbody>
</table>

1 - 14: reprezentativní bodové analýzy z celkem 16 změřených bodů, báze přepočtu 29 apfu.
Stromeyerit vytváří nepravidelně vyvinuté agregáty o velikosti do 200 μm zarostlé v zónálních minerálech skupiny tetraedritu, chalkopyritu a bornitu a místy zatlačující starší mckinstryt (obr. 1 a 3). Při studiu chemického složení stromeyeritu byly vedle hlavních složek zjištěny nízké obsahy Fe (do 0.05 apfu) a minoritní obsahy Hg, Pb, Zn, As, Te a Cl (tab. 2). Jeho empirický vzorec (průměr 24 analýz) lze na bázi 3 apfu vyjádřit jako Ag₀.₄₁₃Cu₀.₁₀₂Fe₀.₈₇₁S₀.₉₅₉.

Bornit byl zjištěn ve formě nepravidelných, až přes 1 mm velkých zm, uzavíraných všemi ostatními hlavními rudními minerály (obr. 4). Chemicky je zajímavý průběžně zvýšenými obsahy Ag (do 0.05 apfu) (tab. 3). Dále byly zjištěny minoritní obsahy Pb (až 0.12 hm.%.) a Hg (až 0.16 hm.%.). Jeho empirický vzorec (průměr 24 analýz) lze na bázi 10 apfu vyjádřit jako (Cu₄.₆⁰₈Ag₀.₄₁₃Hg₀.₉₉₈Fe₀.₈₇₁S₀.₉₅₉). Šířka záběru 620 μm; BSE foto J. Sejkora.

Tabulka 5 Chemické složení tetraedritu (hm. %)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.31</td>
<td>0.24</td>
<td>0.28</td>
<td>0.22</td>
<td>0.22</td>
<td>0.23</td>
<td>0.29</td>
<td>0.32</td>
<td>0.40</td>
<td>0.46</td>
<td>0.38</td>
<td>0.32</td>
<td>0.32</td>
<td>0.35</td>
</tr>
<tr>
<td>Fe</td>
<td>0.00</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Pb</td>
<td>0.19</td>
<td>0.23</td>
<td>0.32</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.24</td>
<td>0.25</td>
<td>0.18</td>
<td>0.22</td>
<td>0.22</td>
<td>0.18</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Cd</td>
<td>0.00</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Co</td>
<td>0.00</td>
</tr>
<tr>
<td>Ga</td>
<td>0.00</td>
</tr>
<tr>
<td>Zn</td>
<td>7.52</td>
<td>7.75</td>
<td>7.66</td>
<td>7.84</td>
<td>7.70</td>
<td>7.70</td>
<td>7.78</td>
<td>7.65</td>
<td>7.32</td>
<td>7.52</td>
<td>7.44</td>
<td>7.50</td>
<td>7.58</td>
<td>7.46</td>
</tr>
<tr>
<td>Hg</td>
<td>0.11</td>
<td>0.00</td>
<td>0.12</td>
<td>0.15</td>
<td>0.07</td>
<td>0.08</td>
<td>0.00</td>
<td>0.07</td>
<td>0.09</td>
<td>0.00</td>
<td>0.12</td>
<td>0.13</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Cu</td>
<td>38.04</td>
<td>39.54</td>
<td>39.34</td>
<td>39.47</td>
<td>39.35</td>
<td>39.23</td>
<td>38.87</td>
<td>38.58</td>
<td>37.44</td>
<td>37.85</td>
<td>37.93</td>
<td>38.00</td>
<td>37.86</td>
<td>37.90</td>
</tr>
<tr>
<td>Bi</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.15</td>
<td>0.15</td>
<td>0.18</td>
<td>0.10</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>As</td>
<td>0.38</td>
<td>6.05</td>
<td>5.51</td>
<td>5.18</td>
<td>4.85</td>
<td>4.29</td>
<td>3.55</td>
<td>3.26</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>S</td>
<td>24.70</td>
<td>25.91</td>
<td>25.49</td>
<td>25.60</td>
<td>25.85</td>
<td>25.57</td>
<td>25.27</td>
<td>25.16</td>
<td>24.54</td>
<td>24.52</td>
<td>24.81</td>
<td>24.74</td>
<td>24.75</td>
<td>24.72</td>
</tr>
<tr>
<td>Ag</td>
<td>0.048</td>
<td>0.036</td>
<td>0.042</td>
<td>0.033</td>
<td>0.033</td>
<td>0.035</td>
<td>0.044</td>
<td>0.049</td>
<td>0.063</td>
<td>0.071</td>
<td>0.059</td>
<td>0.049</td>
<td>0.049</td>
<td>0.054</td>
</tr>
<tr>
<td>Zn</td>
<td>4.96</td>
<td>1.00</td>
</tr>
<tr>
<td>Hg</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu**</td>
<td>0.023</td>
<td>0.000</td>
<td>0.042</td>
<td>0.043</td>
<td>0.043</td>
<td>0.031</td>
<td>0.034</td>
<td>0.015</td>
<td>0.056</td>
<td>0.040</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Sb</td>
<td>1.977</td>
<td>1.980</td>
<td>2.017</td>
<td>2.034</td>
<td>1.966</td>
<td>1.993</td>
<td>1.933</td>
<td>1.987</td>
<td>1.989</td>
<td>2.011</td>
<td>1.930</td>
<td>1.947</td>
<td>1.964</td>
<td>1.935</td>
</tr>
<tr>
<td>As</td>
<td>0.085</td>
<td>1.293</td>
<td>1.188</td>
<td>1.114</td>
<td>1.041</td>
<td>0.927</td>
<td>0.774</td>
<td>0.517</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

1 - 14: reprezentativní bodové analýzy z celkem 44 změřených bodů, báze přepočtu 29 apfu.
Chalkopyrit vytváří poměrně hojné zrna o velikosti přes 500 µm uznávající stromeyerit a mckinstryit, naopak sám zatlačuje bornit (obr. 4). Chemicky je homogenní, zjištěny v něm byly obsahy Ag na hranici detekce (do 0.13 hm.%) a Pb (do 0.14 hm.%) (tab. 3). Empirický vzorec (průměr 11 analýz) lze na bázi 4 apfu vyjádřit jako Cu$_{1.01}$Fe$_{0.98}$S$_{2.01}$.

Minerály skupiny tetraedritu jsou ve studovaném materiálu hojné. Vytvářejí až 1 cm velká zrna, která jsou v BSE obrazu silně zonální (obr. 5); zonálita je vytvořena Sb$_{1.3}$As$_{1.7}$, izomorfní (obr. 6) a trigonalně pyramidální pozici krystalové struktury. Převažujícím minerálem této skupiny je tetraedrit (obr. 7); tennantit tvoří jen minoritní nepravidelné zóny o velikosti až 400 × 50 µm (obr. 7). Reprezentativní bodové analýzy a odpovídající koeficienty empirických vzorců jsou uvedeny v tabulkách 4 a 5. V trigonalí pozici obou členů je vždy vysoce dominantní Cu, zjištěné obsahy Ag jsou velmi nízké (obr. 8) - v tennantitu jen do 0.03 apfu, v tetraedritu pak 0.03 - 0.07 apfu. V tetraedrické pozici vždy vysoce převažuje Zn nad ostatními Me$^{2+}$ kationty (obr. 9); tetraedrity jsou velmi krajní Zn-členy; v tennantitu jsou obsahy dalších Me$^{2+}$ mírně vyšší, ale i tak v součtu nepřevyšují 0.14 apfu. Neobvyklé jsou v tennantitu zjištěné obsahy Ga (do 0.21 hm. %, tj. 0.04 apfu).

Covellin byl určen opticky na základě studia v odrazovém mikroskopu (obr. 10). Vytváří typické šedé až modré silně anizotropní agregáty do velikosti až 0.1 mm, které často zatlačují minerály skupiny tetraedritu.

Podmínky vzniku mineralizace

Z podrobného studia v odražovém mikroskopu a BSE obrazu vyplývá následující sekvence vzniku studované mineralizace: bornit → chalkopyrit → tetraedrit + tennantit → covellin. Nejasná je pozice mckinstryitu a stromeyeritu, které vytvářejí inkluze ve všech rudních minerálech a místy se zdají být ostatními minerály zatlačeny. Navíc se zdá, že místo tyto minerály vytvářejí myrmekitické struktury v bornitu a chalkopyritu, což by znamenalo, že by jejich stáří zhruba souhlasilo s krystalizací obou těchto fází. Bylo však také pozorováno řídké pronikání těchto minerálů skupiny tetraedritu, což ukazuje, že alespoň část výskytů těchto minerálů patří mezi nejmladší fáze ve studované asociaci.

Poděkování

Je milou povinností autorů poděkovat za spolupráci při laboratorní výzkumu Janě Ulmanové z Národního muzea (Praha). Předložená práce vznikla za finanční podpory Grantové agentury ČR v rámci projektu 19-16218S.

Literatura

Añónym (1972) O pokračování žil z příbramského uranového ložiska do granitoidů středočeského plutonu. MS, DIAMO SUL
Habáško J (1972) Geologický projekt průzkumné jámy Milín. MS, DIAMO SUL
Králik M (1972) Možnosti výskytů barevných kovů na strukturách v okolí Milína, MS, DIAMO SUL
Paška R, Králik M (1978) Závěrečná zpráva o provedených průzkumných pracích na šachtě číslo 68 Milín, okr. Příbram. MS, DIAMO SUL