print 2570-7337
online 2570-7345

Crystal structure of uranyl-oxide mineral wölsendorfite revisited


Klíčová slova


The crystal structure of the rare supergene Pb2+-containing uranyl-oxide mineral wölsendorfite has been revisited employing the single-crystal X-ray diffraction. The new structure refinement provided deeper insight into the complex structure of this mineral, revealing additional H2O sites in the interlayer complex and confirming the entrance of the Ca2+ into the structure. Studied wölsendorfite is orthorhombic, space group Cmcm, with unit cell dimensions a = 14.1233(8) Å, b = 13.8196(9) Å, c = 55.7953(12) Å, V = 10890.0(10) Å3, and Z = 8. The structure has been refined to an agreement index (R) of 10.74% for 3815 reflections with I > 3σ(I) collected using a microfocus X-ray source from the microcrystal. In line with the previous structure determination, the refined structure contains U–O–OH sheets of the wölsendorfite topology and an interstitial complex comprising nine symmetrically unique Pb sites, occupied dominantly by Pb2+. Nevertheless, one of the sites seems to be plausible for hosting Ca2+. Its presence has been successfully modeled by the refinement and further supported by the crystal-chemical considerations. The structural formula of wölsendorfite crystal studied is Pb6.07Ca0.68[(UO2)14O18(OH)5]O0.5(H2O)12.6, with Z = 8, Dcalc. = 6.919 g·cm–3 (including theoretical 30.2 H atoms). The rather complex structure of wölsendorfite makes it the third most complex known uranyl-oxide hydroxy-hydrate mineral.


Abstrakt (PDF) - 192.11KB
Fulltext (PDF) - 2.65MB


Burns PC (1999) A new complex sheet of uranyl polyhedra in the structure of wölsendorfite. Am Mineral 84: 1661–1673.

Burns PC (2005) U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Can Mineral 43(6): 1839–1894.

Burns PC, Finch RJ (1999) Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral. Am Mineral 84: 1456–1460.

Burns PC, Finch RJ, Hawthorne FC, Miller ML, Ewing RC (1997) The crystal structure of ianthinite, [U24+                 (UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel. J Nucl Mater 249: 199–206.

Deliens M, Piret P, Comblain G (1981) Les minéraux secondaires d’uranium du Zaïre. Published by Musée Royal de l’Afrique Central, Tervuren, Belgium.

Ewing RC (2015) Long-term storage of spent nuclear fuel. Nature Mater 14: 252–257.

Finch RJ, Ewing RC (1992) The corrosion of uraninite under oxidizing conditions. J Nucl Mater 190: 133–156

Finch RJ, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns PC, Finch RJ (eds) Uranium: Mineralogy, Geochemistry and the Environment. Rev Mineral Geochem 38: 91–180.

Finch RJ, Burns PC, Hawthorne FC, Ewing RC (2006) Refinement of the crystal structure of billietite Ba[(UO2)6 O4(OH)6](H2O)8. Can Mineral 44: 1197–1205.

Gurzhiy VV, Plášil J (2019) Structural complexity of natural uranyl sulfates. Acta Crystallogr B 75: 39–48

Gurzhiy VV, Kuporev IV, Kovrugin VM, Murashko MN, Kasatkin AV, Plasil J (2019) Crystal chemistry and structural complexity of natural and synthetic uranyl selenites. Crystals 9: 639.

Klingensmith AL, Deely KM, Kinman WS, Kelly V, Burns PC (2007) Neptunium incorporation in sodium-substituted metaschoepite. Am Mineral 92: 662–669.

Krivovichev SV (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallogr A 68: 393–398

Krivovichev SV (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineral Mag 77: 275–326.

Krivovichev SV (2014) Which inorganic structures are the most complex? Angew Chem Int Ed Engl 53: 654–661.

Krivovichev SV (2016) Structural complexity and configurational entropy of crystals. Acta Crystallogr B 72: 274–276

Krivovichev SV (2020) Polyoxometalate clusters in minerals: review and complexity analysis. Acta Crystallogr B 76, 618–629

Krivovichev SV, Plášil J (2013) Mineralogy and crystallography of uranium. In: Burns P. C., Sigmon G. E. (eds) Uranium: From Cradle to Grave. Mineralogical Association of Canada Short Courses 43, pp 15–119

Kubatko KA, Helean K, Navrotsky A, Burns PC (2006) Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates. Am Mineral 91: 658–666.

Lussier AJ, Lopez RAK, Burns PC (2016) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. Can Mineral 54: 177–283.

Maher K, Bargar JR, Brown GE Jr (2013) Environmental speciation of actinides. Inorg Chem 52: 3510–3532.

Mrázek Z, Novák M (1984) Secondary minerals of uranium from Zálesí and Horní Hoštice in the Rychlebské hory Mts., northern Moravia. Acta Mus Moraviae, Sci Nat 69: 7–35 (in Czech)

Murakami T, Ohnuki T, Isobe H, Sato T (1997) Mobility of uranium during weathering. Am Mineral 88: 888–899.

O’Hare PAG, Lewis BM, Nguyen SN (1988) Thermochemistry of uranium compounds XVII. Standard molar enthalpy of formation at 198.15 K of dehydrated schoepite UO3·0.9H2O. Thermodynamics of (schoepite + dehydrated schoepite + water). J Chem Thermodyn 20: 1287–1296.

Olds TA, Plášil J, Kampf AR, Škoda R, Burns PC, Čejka J, Bourgoin V, Boulliard J-C (2017a) Gauthierite, KPb[(UO2)7O5(OH)7]·8H2O, a new uranyl-oxide hydroxy-hydrate mineral from Shinkolobwe with a novel uranyl-anion sheet topology. Eur J Mineral 29: 129–141.

Olds TA, Plášil J, Kampf AR, Simonetti A, Sadergaski LR, Chen YS, Burns PC (2017b) Ewingite: Earth’s most complex mineral. Geology 45: 1007–1010

Pagoaga MK, Appleman DE, Stewart JM (1987) Crystal structures and crystal chemistry of the uranyl oxide hydrates becquerelite, billietite, and protasite. Am Mineral 72: 1230–1238

Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: General features. Z Kristallogr 229: 345–352.

Plášil J (2014) Oxidation–hydration weathering of uraninite: the current state-of-knowledge. J Geosci 59: 99–114.

Plášil J (2017) Crystal structure of richetite revisited: Crystallographic evidence for the presence of pentavalent uranium. Am Mineral 102: 1171–1175.

Plášil J (2018a) Uranyl-oxide hydroxy-hydrate minerals: their structural complexity and evolution trends. Eur J Mineral 30: 237–251.

Plášil J (2018b) The crystal structure of uranyl-oxide mineral schoepite, [(UO2)4O(OH)6] (H2O)6, revisited. J Geosci 63: 65–73.

Plášil J, Sejkora J, Ondruš P, Veselovský F, Beran P, Goliáš V (2006) Supergene minerals in the Horní Slavkov uranium ore district, Czech Republic. J Czech Geol Soc 51: 149–158.

Plášil J, Sejkora J, Čejka J, Škoda R, Goliáš V (2009) Supergene mineralization of the Medvědín uranium deposit, Krkonoše Mountains, Czech Republic. J Geosci 54: 15–56.

Plášil J, Kampf AR, Škoda R, Čejka J (2018) Nollmotzite, Mg[UV(UVIO2)2O4F3]·4H2O, the first natural uranium oxide containing fluorine. Acta Crystallogr B 74: 362–369.

Plášil J, Kampf AR, Olds TA, Sejkora J, Škoda R, Burns PC, Čejka J (2020) The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates. Am Mineral 105: 561–568.

Protas J (1957) La wölsendorfite, nouvelle espèce uranifère. C R Hebd Séan Acad Sci 244: 2942–2944

Rigaku (2019) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK

Sejkora J, Mazuch J, Abert F, Šrein V, Novotná M (1997) Supergene mineralization of the Slavkovice uranium deposit in western Moravia. Acta Mus Moraviae, Sci Nat 81: 3–24 (in Czech)

Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71: 3–8